gibuu is hosted by Hepforge, IPPP Durham
GiBUU
next up previous contents
Next: Medium Corrections Up: Final State Decisions Previous: Two body final states   Contents


Three body final states : $\mathbf{X
\rightarrow c d e}$ in the vacuum

In analogy to the two-particle final and utilizing equation (1.7)
$\displaystyle \frac{d\sigma_{a b \rightarrow c d e }}{d\mu_c\, d\mu_d\,d\mu_e\ d\vert\vec{p}_{c}\vert\, d\Omega_c \, d\vert\vec{p}_{d}\vert\, d\phi_d}(s)$ $\textstyle =$ $\displaystyle \frac{1}{8\left(2\pi\right)^5} \frac{1}{p_{ab} \sqrt{s}} \frac{\l...
..._{d}\right\vert}{E_c E_d} \mathcal{A}_c(\mu_{c},p_c) \mathcal{A}_d(\mu_{d},p_d)$  
    $\displaystyle \times \, \mathcal{A}_e(\mu_{e},p_e)\left\vert\mathcal{M}_{a b \rightarrow c d e} (s)\right\vert^2 \,.$ (2.15)

and the variable transformation

\begin{displaymath}
y_i(\mu_i)=2\,\arctan\left[2\,\frac{\mu_i-M_i^0}{\Gamma^0_i}\right]; i\in\left\lbrace c,d\right\rbrace
\end{displaymath}

we get

\begin{eqnarray*}
\frac{d\sigma_{a b \rightarrow c d e }}{dy_c\, dy_d\,dy_e\ d\v...
... \, \frac{d\mu_c}{dy_c} \frac{d\mu_d}{dy_d} \frac{d\mu_e}{dy_e}.
\end{eqnarray*}

Hence we need to choose $y_c, y_d, y_e, \vert\vec{p}_{c}\vert, \Omega_c$ and $\vert\vec{p}_{d}\vert$ independent of each other. The limits for the $y_i$ are given by the smallest and largest possible masses. The absolute values of the momenta $\vert\vec{p}_{i}\vert$ are limited by the energy conservation. Evaluated in CM-System

\begin{displaymath}\sum_i E_{i}=\sum_i \sqrt{m_i^2+p_i^2}=\sqrt{s}\end{displaymath}

this demand sets the limits to

\begin{displaymath}\vert\vec{p}_{i}\vert< \sqrt{s} \, . \end{displaymath}

The value of $\Omega_c$ is choosen by choosing $\cos(\theta)\in[-1,1]$ and $\phi\in[0,2\pi]$ by random. Once we have chosen those parameters, the full kinematics is fixed. Having choosen the parameters according to flat distribution we can define a probability to accept such a configuration by

\begin{displaymath}
p_{accept}= \frac{\frac{\left\vert\vec{p}_{c}\right\vert \le...
...},p_e) \frac{d\mu_d}{dy_d} \frac{d\mu_e}{dy_e}}{\mathcal{MAX}}
\end{displaymath}

where $\mathcal{MAX}$ is chosen such that it is larger than the maximum of the nominator. With a Monte-Carlo decision we now accept or reject this configuration. We evaluate different configurations until we get one, which is accepted.
next up previous contents
Next: Medium Corrections Up: Final State Decisions Previous: Two body final states   Contents
Oliver Buss 2005-03-16