TABLE OF CONTENTS
- 1. /RMF
- 1.1. RMF/RMF_flag
- 1.2. RMF/grad_flag
- 1.3. RMF/lorentz_flag
- 1.4. RMF/fourMomDen_flag
- 1.5. RMF/N_set
- 1.6. RMF/fact_pbar
- 1.7. RMF/fact_hyp
- 1.8. RMF/fact_antihyp
- 1.9. RMF/fact_Xi
- 1.10. RMF/fact_antiXi
- 1.11. RMF/fact_kaon
- 1.12. RMF/kaonpot_flag
- 1.13. RMF/ModificationFactor
- 1.14. RMF/init
- 1.15. RMF/RMF_input
- 1.16. RMF/walecka
- 1.17. RMF/fshift
- 1.18. RMF/f
- 1.19. RMF/fprime
- 1.20. RMF/g
/RMF [ Modules ]
NAME
module RMF
PURPOSE
Includes all information about relativistic mean field potential for baryons and mesons.
NOTES
- When hyperon coupling is scaled by the well known factor of 2/3, the kaons are scaled by the factor 1/3 in order to compensate the missing self energy between incoming and outgoing channel. This is because the threshold condition, e.g. \pi N->YK sqrt(s*)>m*_y+m*_k, in the medium assumes no changes in the self energy between initial and final states (see Alexei's paper on three-body collisions). This prescription should better not be used at energies near the kaon-production threshold, since in this method the kaon potential is not consistent within Chiral Perturbation Theory or One-Boson-Exchange models.
- The same non-trivial feature appears if the baryon self energies depend on isospin. Presently no isospin-dependent part is included in the baryon fields.
- Going beyond this simple approximation means to explicitly include different threshold conditions for all channels considered in the collision term.
RMF/RMF_flag [ Global module-variables ]
[ Top ] [ RMF ] [ Global module-variables ]
SOURCE
logical, save :: RMF_flag = .false.
PURPOSE
If .true. then use relativistic mean fields.
RMF/grad_flag [ Global module-variables ]
[ Top ] [ RMF ] [ Global module-variables ]
SOURCE
logical, save, public :: grad_flag = .false.
PURPOSE
If .true. then include space derivatives of the fields.
RMF/lorentz_flag [ Global module-variables ]
[ Top ] [ RMF ] [ Global module-variables ]
SOURCE
logical, save, public :: lorentz_flag = .true.
PURPOSE
If .false. then the space components of the omega field are put to zero.
RMF/fourMomDen_flag [ Global module-variables ]
[ Top ] [ RMF ] [ Global module-variables ]
SOURCE
logical, save, public :: fourMomDen_flag = .false.
PURPOSE
If .true. then compute the four-momentum density field (not used in propagation).
RMF/N_set [ Global module-variables ]
[ Top ] [ RMF ] [ Global module-variables ]
SOURCE
integer, save :: N_set = 1
PURPOSE
Number of the parameter set:
- 1 --- NL1 from G.A. Lalazissis et al., PRC 55, 540 (1997) (K=211.29 MeV, m^*/m=0.57)
- 2 --- NL3 from G.A. Lalazissis et al., (K=271.76 MeV, m^*/m=0.60)
- 3 --- NL2 set from A. Lang et al., NPA 541, 507 (1992) (K=210 MeV, m^*/m=0.83)
- 4 --- NLZ2 set from M. Bender et al., PRC 60, 34304 (1999) (K=172 MeV, m^*/m=0.583)
- 5 --- NL3* set from G.A. Lalazissis, private communication, (K=258.28 MeV, m^*/m=0.594)
- 6 --- Same as N_set=3, but including the rho-meson.
- 7 --- NL1 set from S.J. Lee et al., PRL 57, 2916 (1986) (K=212 MeV, m^*/m=0.57)
- 8 --- NL2 set from S.J. Lee et al., PRL 57, 2916 (1986) (K=399 MeV, m^*/m=0.67)
RMF/fact_pbar [ Global module-variables ]
[ Top ] [ RMF ] [ Global module-variables ]
SOURCE
real, save :: fact_pbar = 1.
PURPOSE
Modification factor for the antiproton coupling constants.
RMF/fact_hyp [ Global module-variables ]
[ Top ] [ RMF ] [ Global module-variables ]
SOURCE
real, save :: fact_hyp = 1.
PURPOSE
Modification factor for the hyperon coupling constants.
RMF/fact_antihyp [ Global module-variables ]
[ Top ] [ RMF ] [ Global module-variables ]
SOURCE
real, save :: fact_antihyp = 1.
PURPOSE
Modification factor for the antihyperon coupling constants.
RMF/fact_Xi [ Global module-variables ]
[ Top ] [ RMF ] [ Global module-variables ]
SOURCE
real, save :: fact_Xi = 1.
PURPOSE
Modification factor for the Xi and XiStar coupling constants.
RMF/fact_antiXi [ Global module-variables ]
[ Top ] [ RMF ] [ Global module-variables ]
SOURCE
real, save :: fact_antiXi = 1.
PURPOSE
Modification factor for the antiXi and antiXiStar coupling constants.
RMF/fact_kaon [ Global module-variables ]
[ Top ] [ RMF ] [ Global module-variables ]
SOURCE
real, save :: fact_kaon = 0.
PURPOSE
Modification factor for the Kaon and antikaon coupling constants.
RMF/kaonpot_flag [ Global module-variables ]
[ Top ] [ RMF ] [ Global module-variables ]
SOURCE
logical, save, public :: kaonpot_flag = .false.
PURPOSE
This switch turns on the Kaon potential in RMF mode.
RMF/ModificationFactor [ Functions ]
NAME
real function ModificationFactor(Id,antiFlag)
PURPOSE
Returns the modification factor of the RMF coupling constants for a given particle.
INPUTS
- integer, intent(in) :: Id ! Id of particle
- logical, intent(in) :: antiFlag ! if .true. the particle is an antiparticle
RMF/init [ Subroutines ]
[ Top ] [ RMF ] [ Subroutines ]
NAME
subroutine init
PURPOSE
Reads input switches. Initializes the mean field parameters.
RMF/RMF_input [ Namelists ]
NAME
NAMELIST /RMF_input/
PURPOSE
Includes the following input switches:
- RMF_flag
- grad_flag
- lorentz_flag
- fourMomDen_flag
- kaonpot_flag
- N_set
- fact_pbar
- fact_hyp
- fact_antihyp
- fact_Xi
- fact_antiXi
- fact_kaon
RMF/walecka [ Subroutines ]
[ Top ] [ RMF ] [ Subroutines ]
NAME
subroutine walecka(rhobar,shift,em0,rhoscalar,endens,S,V,potential)
PURPOSE
Determine the mass shift of the nucleon in equilibrated isospin symmetric nuclear matter at zero temperature within Walecka model with nonlinear sigma-coupling.
INPUTS
- real, intent(in) :: rhobar ! -- baryon density (fm^-3),
- real, optional, intent(in) :: em0 ! -- starting value of mass for iterations (GeV),
OUTPUT
- real, intent(out) :: shift ! = m - m^* -- mass shift (GeV),
- real, optional, intent(out) :: rhoscalar ! -- scalar density (fm^-3),
- real, optional, intent(out) :: endens ! -- energy density (GeV/fm^3),
- real, optional, intent(out) :: pressure ! -- pressure (GeV/fm^3),
- real, optional, intent(out) :: S ! -- scalar potential (GeV),
- real, optional, intent(out) :: V ! -- vector potential (GeV),
- real, optional, intent(out) :: potential ! -- Schroedinger equivalent potential (GeV)
RMF/fshift [ Functions ]
NAME
real function fshift(rho)
PURPOSE
Fit of the nucleon mass shift m - m^* for the various RMF parameter sets
INPUTS
- real, intent(in) :: rho -- baryon density (fm**-3)
OUTPUT
- real :: fshift -- m - m^* (GeV)
NOTES
This is a very rough fit which is only good to provide the starting value for iterations in walecka. The density rho must be in the interval from 0 up to 12*rhoNull.
RMF/f [ Functions ]
NAME
real function f
PURPOSE
Computes analytically the expression
3*a*\int_0^1 dx x^2/\sqrt(x^2+a^2)
INPUTS
- real, intent(in) :: a -- dimensionless parameter equal to m^*/p_F
RMF/fprime [ Functions ]
NAME
real function fprime(a)
PURPOSE
Computes analytically the derivative of function f(a) with respect to a.
INPUTS
- real, intent(in) :: a -- dimensionless parameter equal to m^*/p_F
RMF/g [ Functions ]
NAME
real function g(a)
PURPOSE
Computes analytically the expression
\int_0^1 dx x^2*\sqrt(x^2+a^2)
INPUTS
- real, intent(in) :: a -- dimensionless parameter equal to m^*/p_F