gibuu is hosted by Hepforge, IPPP Durham
GiBUU
next up previous contents
Next: The cross section for Up: Resonance production: Previous: The mass of the   Contents

The cross section for a b $\longrightarrow $ R in the vacuum

The cross section for $a\ b \rightarrow R$ in the vacuum is given by
$\displaystyle \sigma_{a\,b \rightarrow R}(s)$ $\textstyle =$ $\displaystyle \sum_{f} F_{I} \frac{2J_R+1}{\left(2J_a+1\right)\left(2J_b+1\righ...
...}(s) \, \Gamma_{R \rightarrow f}(s)}{\left(s-M_R^2\right)^2+s\Gamma_{tot}^2(s)}$  
  $\textstyle =$ $\displaystyle F_{I} \frac{2J_R+1}{\left(2J_a+1\right)\left(2J_b+1\right)}
\frac...
...ghtarrow a b}(s) \, \Gamma_{tot}(s)}{\left(s-M_R^2\right)^2+s\Gamma_{tot}^2(s)}$ (1.2)

with
$\displaystyle \mathcal{S}_{ab}=\left\lbrace
\begin{array}{ll}
1 \mbox{ if a,b not identical} \\  \frac{1}{2} \mbox{ if a,b identical}
\end{array}\right.$     (1.3)

being the symmetry factor of $a$ and $b$ and $p_{ab}$, being the center of mass momentum of particles $a$ and $b$, the $J_i$'s define the total spin of the particles and

\begin{displaymath}
F_I=\left\langle I^a\, I^b ; i_z^a\, i_z^b \vert I^R\, i_z^a+i_z^b \right\rangle^{2}
\end{displaymath}

incorporates the Clebsch-Gordan coefficients due to Isospin.

Oliver Buss 2005-03-16