gibuu is hosted by Hepforge, IPPP Durham
GiBUU
next up previous contents
Next: Up: Initial channel Previous:   Contents

$\mathbf{\pi N \longrightarrow \Sigma \, K }$

As implemented in [Eff99] we use a parametrization according to Tsushima et al [THF97] for
$\displaystyle \sigma_{\Sigma   K}(1)$ $\textstyle =$ $\displaystyle \sigma_{\pi^{+} p -> K^{+} \Sigma^{+}}$ (2.9)
$\displaystyle \sigma_{\Sigma   K}(2)$ $\textstyle =$ $\displaystyle \sigma_{\pi^{0} p -> K^{+} \Sigma^0}$ (2.10)
$\displaystyle \sigma_{\Sigma   K}(3)$ $\textstyle =$ $\displaystyle \sigma_{\pi^{-} p -> K^{0} \Sigma^0}$ (2.11)
$\displaystyle \sigma_{\Sigma   K}(4)$ $\textstyle =$ $\displaystyle \sigma_{\pi^{-} p -> K^{+} \Sigma^-}  .$ (2.12)

Assuming isospin symmetry and assuming that everything goes through an $I=\frac{1}{2}$ resonance, we get
$\displaystyle \sigma_{\pi^{0} p -> K^{0} \Sigma^+}= \sigma_{\pi^{-} p -> K^{0} \Sigma^0}=\sigma_{\Sigma \, K}(3) \,\ .$     (2.13)

These last five cross sections (2.9) to (2.13) define all possible channels with a proton in the initial state. Channels with an initial neutron are defined by charge conjugation:

\begin{eqnarray*}
\sigma_{\pi^{-} n -> K^{0} \Sigma^{-}} &=\sigma_{\pi^{+} p -> ...
...igma_{\pi^{-} p -> K^{0} \Sigma^0}&=\sigma_{\Sigma \, K}(3) \, .
\end{eqnarray*}



Oliver Buss 2005-03-16