gibuu is hosted by Hepforge, IPPP Durham
GiBUU

Changes between Initial Version and Version 1 of jobCards/deuterium


Ignore:
Timestamp:
Apr 22, 2009, 10:48:36 PM (15 years ago)
Author:
oliver
Comment:

Deuterium jobcard

Legend:

Unmodified
Added
Removed
Modified
  • jobCards/deuterium

    v1 v1  
     1= Jobcard switches for the Deuterium target =
     2
     3In section 8.4.1 of [http://www.uni-giessen.de/cms/fbz/fb07/fachgebiete/physik/einrichtungen/theorie/theorie1/publications/dissertation/buss_diss/at_download/file Oliver Buss' thesis] there are details given on the GiBUU deuterium implementation. The aim of this wiki page is to outline jobcard switches, which are necessary to make use of this implementation.
     4
     5First the target has to be adjusted to Deuterium:
     6{{{
     7$target
     8target_Z=1
     9target_A=2
     10fermimotion=.true.
     11$end
     12}}}
     13To distribute the nucleons in position and momentum space we can choose between two different wave function models:
     14{{{
     15$deuteriumFermi
     16waveFunction_switch=2
     17! 1=Bonn
     18! 2=Argonne
     19$end
     20}}}
     21Next, we need to define a potential to bind the two nucleons. For this we can't use a mean field, because Deuterium represents a too small system. Instead we use a real two-body potential. Using the parallel ensemble technique, the potential ''V'' for each nucleon in the ''j''th ensemble is given by
     22{{{
     23#!latex
     24$V=V_\text{2-body}(r_{1,j}-r_{2,j})$
     25}}}
     26where
     27{{{
     28#!latex
     29$r_{i,j}$
     30}}}
     31is the position of the ''i''th nucleon in the ''j''th ensemble. For the full ensemble method, a Deuterium potential is not yet properly implemented. So we choose for the general input and the propagation routines the following switches:
     32{{{
     33$input
     34delta_T     = 0.025              ! small time step sizes since the two-body potential is stiff and therefore the propagation is sensitive to too large time steps
     35fullensemble=.false.             ! => use parallel ensemble technique
     36freezeRealParticles=.false.     
     37set_length_perturbative=.true.
     38length_perturbative=1            ! We don't use perturbative particles, see comments below
     39...
     40$end
     41
     42$initDensity
     43densitySwitch=1
     44splineExtraPolation=.true. !Switch for linear spline extrapolation for dynamically calculated density: Extrapolates density between
     45gridPoints(1)=100
     46gridPoints(2)=100
     47gridPoints(3)=100
     48gridSize(1)=8.
     49gridSize(2)=8.
     50gridSize(3)=8.
     51$end
     52
     53$propagation
     54delta_P=0.01                ! Delta Momentum for derivatives
     55DerivativeType=2            ! 1=first order Range-Kutta, 2=second order Range-Kutta
     56predictorCorrector=.true.   ! Whether to use a predictor/corrector algorithm to do the propagation
     57$end
     58
     59$baryonPotential
     60EQS_Type=7   ! => Two body potential for deuterium
     61DeltaPot=1   ! Switch for potential of spin=3/2 resonances
     62             ! 1=nucleon (spin=1/2) potential times  3/5   [according to ericson/Weise book]
     63             ! 2= 100 MeV *rho/rhoNull
     64symmetriePotFlag=.false.   ! Switch for the assymetry term in the nucleon potential
     65$end
     66
     67$Yukawa
     68yukawaFlag=.false.  !decides whether Yukawa is switched off(.false.)  or on (.true.)
     69$end
     70}}}
     71
     72
     73Oliver prefers not to use perturbative particles with Deuterium, since there is no unperturbed nucleus left if there is a nuclear reaction in deuterium. So he chooses
     74{{{
     75$low_photo_induced
     76...
     77realRun=.true. ! => reaction products are set into real particle vector
     78$end
     79}}}
     80
     81