gibuu is hosted by Hepforge, IPPP Durham
GiBUU

Changes between Initial Version and Version 1 of AnnotatedJobHarp


Ignore:
Timestamp:
Jan 21, 2009, 7:13:40 PM (15 years ago)
Author:
gallmei
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • AnnotatedJobHarp

    v1 v1  
     1= Annotated Jobcard "jobHarp" =
     2
     3The jobcard explained here in little bit more detail is the file "jobHarp" from Release 1.2. This jobcard may be used in order to calculate particle spectra in pion or proton induced reaction on nuclei. The designated energies are 3 upto 50 GeV, as e.g. possible within the HARP and NA61/Shine experiments.
     4
     5For more information we refer to our [http://theorie.physik.uni-giessen.de/~gibuu/Documentation/ online documentation]
     6
     7
     8{{{
     9!************************************************************ -*- fortran -*-
     10!* A JobCard for BUU:
     11!* ==================
     12!*
     13!* This JobCard tries to be a template for all
     14!*       "HiEnergy pion+Nucleus"
     15!* collisions.
     16!* Selected parameters are suitable for HARP and NA61/SHINE
     17!* calculations
     18!*
     19!************************************************************
     20
     21!************************************************************
     22! General Input :
     23!************************************************************
     24$input
     25      eventtype   = 12          ! HiPion
     26}}}
     27Here we select the initialization routine which is responsible for pion/proton induced reactions. The final state particles are treated perturbatively.
     28{{{
     29
     30      numEnsembles= 100         ! number of ensembles
     31}}}
     32The number of ensembles the code treats in the one run. Together with num_runs_SameEnergy (below) responsible for the statistics to collect in the total run. If no potentials are switched on and also the particle density is calculated analytically (as in the given example here), only the total number numEnsembles*num_runs_SameEnergy matters. (Nevertheless, the larger numEnsembles, the more memory the code occupies.)
     33{{{
     34
     35      numTimeSteps= 100         ! number of time steps
     36      delta_T     = 0.10        ! time step size
     37}}}
     38How many time steps the propagation calculates after the first collision before it assumes, that the detector has been reached (and the size in fm). Here we propagate in total 10 fm after the first collision. After this instable particles are forced to decay and the analysis routines are called.
     39{{{
     40
     41      set_length_perturbative = .TRUE.
     42!      length_perturbative = 500  ! adjust according target nucleus
     43      length_perturbative = 2000 ! adjust according target nucleus
     44!      length_perturbative = 4000 ! adjust according target nucleus
     45}}}
     46Here we set the size the code should allocate for the perturbative particle vector of the final state particles. The actual array size is numEnsembles*length_perturbative times the number of bytes we need to store all information for one individual particle. For larger target nuclei you need more possible entries. On the other hand you should not choose the vector too large, since you may run into problems with memory. Additionally, although almost empty, a particle vector chosen too large may also slow down the code.
     47Depending on energy, process type and size of target nucleus one should find a compromise. A good hint is the line
     48''#### pertParticles is occupied by   xxx% with   yyy% ensembles over 80%'' the code prints every timestep.
     49{{{
     50
     51!      num_runs_SameEnergy=10000  ! number of runs per energy
     52      num_runs_SameEnergy=2  ! number of runs per energy
     53}}}
     54(see above)
     55{{{
     56
     57      localEnsemble = .TRUE.
     58}}}
     59BUU calculations may be done in ''parallel ensemble method'', ''full ensemble method'' and (in our code) in ''local ensemble method'', which is a full ensemble method with local collision criteria (see e.g. [http://gibuu.physik.uni-giessen.de/GiBUU/chrome/site/files/lang_phd.pdf A.Lang, phd thesis, Gießen, 1991 (in german)]).
     60{{{
     61      freezeRealParticles = .TRUE.
     62
     63      DoPrLevel(1) = .FALSE.
     64      DoPrLevel(2) = .FALSE.
     65
     66      path_To_Input = '~/WC/buuinput'
     67
     68$end
     69
     70$LesHouches
     71!      LesHouchesFinalParticles_Pert=.true. ! if you want that output
     72$end
     73
     74$initRandom
     75      SEED=45678                ! Seed for the random number
     76$end
     77
     78$initDensity
     79      densitySwitch=2           ! 1=dynamic, 2=analytic
     80$end
     81
     82$initPauli
     83      pauliSwitch=2             ! 1=dynamic, 2=analytic
     84$end
     85
     86$propagation
     87      coulomb=.false.           ! Whether to use coulomb in propagation
     88      predictorCorrector=.false. ! Whether to use a predictor/corrector algorithm
     89$end
     90
     91!************************************************************
     92!       Input for potentials
     93!************************************************************
     94
     95$Coulomb
     96      CoulombFlag=.false.
     97$end
     98
     99$mesonPotential
     100      noPerturbativePotential=.true. ! perturbative mesons feel no potential
     101$end
     102
     103$baryonPotential
     104      noPerturbativePotential=.true. ! perturbative baryons feel no potential
     105$end
     106
     107$Yukawa
     108      yukawaFlag=.false.        ! whether Yukawa is switched on/off
     109$end
     110
     111$width_Baryon
     112      mediumSwitch_coll=.false.
     113$end
     114
     115
     116$baryonWidthVacuum
     117      use_cutoff=.true.
     118$end
     119
     120
     121!************************************************************
     122!       Input specific for the reactions
     123!************************************************************
     124
     125$target
     126!      fermiMotion = .FALSE.
     127!      target_Z=  1, target_A=  1 ! proton,neutron, deuterium
     128!      target_Z=  4, target_A=  9, densitySwitch_Static=4 ! Be
     129!      target_Z=  6, target_A= 12, densitySwitch_Static=4 ! C
     130      target_Z=  6, target_A= 12 ! C
     131!      target_Z=  7, target_A= 14 ! N
     132!      target_Z= 10, target_A= 20 ! Ne
     133!      target_Z= 16, target_A= 32 ! S
     134!      target_Z= 26, target_A= 56 ! Fe
     135!      target_Z= 29, target_A= 64 ! Cu
     136!      target_Z= 36, target_A= 84 ! Kr
     137!      target_Z= 54, target_A=131 ! Xe
     138!      target_Z= 82, target_A=208 ! Pb
     139$end
     140
     141!************************************************************
     142
     143$HiPionNucleus           ! EVENTTYPE = 12
     144      distance=10.              ! distance of pions to nucleus
     145      impact_parameter=-99      ! impact-parameter<0: impact-parameter integration
     146      DoProton=.TRUE.
     147      charge=1                  ! charge of pions
     148      numberPions= 25           ! number of pions per ensemble
     149
     150!      ekin_lab=515.             ! kinetic energy in system where nucleus rests
     151
     152!      ekin_lab = 2.205 ! p= 3GeV
     153!      ekin_lab = 4.149 ! p= 5GeV
     154!      ekin_lab = 7.117 ! p= 8GeV
     155!      ekin_lab =11.099 ! p=12GeV
     156      ekin_lab = 30.000 ! T2K
     157
     158
     159      doPerturbativeInit=.TRUE. ! Do perturbative init
     160      DoOnlyOne = .TRUE.
     161      minimumMomentum=0.1       ! minimum momentum for particles to propagate
     162$end
     163
     164
     165
     166!************************************************************
     167!          The collision term
     168!************************************************************
     169
     170$collisionTerm
     171      energyCheck=0.100         ! accuracy of energy check in GeV
     172      twoBodyProcessesRealReal = .FALSE.
     173
     174!      oneBodyProcesses=.false.
     175!      twoBodyProcesses=.false.
     176!      threeBodyProcesses=.false.
     177$end
     178
     179$insertion
     180      minimumEnergy=0.100       ! minimal kinetic energy of produced nucleons (GeV)
     181$end
     182
     183$master_2Body
     184      correctEnergy_message=.false.
     185$end
     186
     187
     188!************************************************************
     189! Temperature and thermodynamics
     190!************************************************************
     191$initThermoDynamics
     192      temperatureSwitch=1 ! 1=groundstate calculations (T=0,mu=E_F)
     193$end
     194
     195
     196!************************************************************
     197! Additional Pythia Parameters
     198!************************************************************
     199$pythia
     200      PARP( 91) = 0.44     ! width intrinsic kT
     201      MSTP( 21) = 21       ! selection of main routine
     202$end
     203
     204}}}