
K. Gallmeister for the GiBUU group
Goethe-Universität, Frankfurt

Sept 2019

Tutorial GiBUU
Part B: Hands-On (neutrino init)

Tutorial GiBUU
Part B: Hands-On (neutrino init)

 GiBUU implementation

 Hands On: Final state with neutrino init

 GiBUU implementation

 Hands On: Final state with neutrino init

BUU: Testparticle ansatzBUU: Testparticle ansatz

idea:
approximate full phase-space density distribution by a
sum of delta-functions

each delta-function represents one (test-)particle
with a sharp position and momentum

large number of test particles needed

Nuclear ground stateNuclear ground state

density distribution: Woods-Saxon (or harm. Oscillator)

particle momenta: ‘Local Thomas-Fermi approximation’

Fermi-momentum:

Fermi-energy:

• no nuclear excitations
• neutrino energy > 50 MeV “GiBUU is semiclassical”

Nuclear ground stateNuclear ground state

improvement: ensure constant Fermi-Energy

needs iteration for mom.dep potential

important for QE-peak (Gallmeister, Mosel, Weil, PRC94 (2016) 035502)

non-mom.dep potential, asymmetry-term, Coulomb

InitInit

in principle:
1) initialize nucleons

2) perform one initial elementary event on one nucleon

3) propagate nucleons and final state particles

correct, but ‘waste of time’

idea:
final state particles do not really disturb the nucleus

2 particle classes:
‘real particles’

‘perturbative particles’

Particle classesParticle classes

‘real particles’
nucleons

may interact among each other

interaction products are again ‘real particles’

‘perturbative particles’
final state particles of initial event

may only interact with ‘real particles’

interaction products are again ‘perturbative particles’

‘real particles’ behave as if other particles are not there

Init with perturbative particlesInit with perturbative particles

init
1) initialize nucleons

2) perform one initial elementary event on every nucleon

3) propagate nucleons and final state particles

final states particles are ‘perturbative particles’

different final states do not interfere

every final state particle gets a ‘perturbative weight’:
value: cross section of initial event

is inherited in every FSI

for final spectra the ‘perturbative weights’ have to be
added, not only the particle numbers

Init with perturbative particlesInit with perturbative particles

idea:

simple workaround against oscillating ground states:
freeze nucleon testparticles

since nucleons are real particles, their interactions among
each other should not influence final state particles

advantage: computational time

disadvantage: ???

The GiBUU websiteThe GiBUU website

https://gibuu.hepforge.org

central place for all information on GiBUU

based on a wiki system (‘trac’)

contains lots of information about the model and code

documentation of input parameters, output files etc.

source code viewer for svn repository

timeline of news & changes

cross section plotter (for hadronic interactions)

https://gibuu.hepforge.org/

Cross section plotterCross section plotter

1

10

100

1 10 100

σ
[mb]m

b]]

sqrt(s) [mb]GeV]

data (total)
data (elastic)

total
elastic

https://gibuu.hepforge.org/XSection/

https://gibuu.hepforge.org/XSection/

Technical PrerequisitesTechnical Prerequisites

GiBUU runs on Linux, Mac, Windows

Linux is preferred platform

needed software tools:
subversion (for code checkout)

GNU make

a Fortran compiler (e.g. gfortran 5.4)

perl

libbz2

(a running ROOT installation)

see website for supported compilers

private observation: ifort generates fastest code

for output in ROOT format
 via RootTuple library:
 https://roottuple.hepforge.org/

https://roottuple.hepforge.org/

Getting the codeGetting the code

...via check-out from svn repository

create a new directory
mkdir GiBUU; cd GiBUU

check-out the code
svn co
http://gibuu.hepforge.org/svn/releases/release2017

 check out the input files
svn co
http://gibuu.hepforge.org/svn/releases/buuinput2017
./buuinput

git access (GitHub) possible, but not really maintained

HEPFORGE UPGRADE 2018

http://gibuu.hepforge.org/svn/releases/release2017

Getting the codeGetting the code

...via tar-balls

create a new directory
mkdir GiBUU; cd GiBUU

download the code
wget –content-disposition →
→https://gibuu.hepforge.org/downloads?f=release2019.tar.gz

tar -xzvf release2019.tar.gz

download the input files
wget –content-disposition →
→https://gibuu.hepforge.org/downloads?f=buuinput2019.tar.gz

tar -xzvf buuinput2019.tar.gz

(download RootTuple library)
wget –content-disposition →
→https://gibuu.hepforge.org/downloads?f=libraries2019_RootTuple.tar.gz

tar -xzvf libraries2019_RootTuple.tar.gz

/trac/wiki/download

https://gibuu.hepforge.org/trac/wiki/download

Getting the codeGetting the code

...via docker

initiative by Luke Pickering:

 https://hub.docker.com/r/picker24/gibuu_2019

… is this a way to go?
(feedback/input very welcome!!!)

https://hub.docker.com/r/picker24/gibuu_2019

Compiling the codeCompiling the code

go to directory and make!
 cd release2019; make
(cd release2019; make buildRootTuple; make withROOT=1)

takes about 3 minutes on my laptop (one core)

parallel make
make -j 4

choosing a compiler
make FORT=gfortran-4.8

no optimization
make MODE=opt0

re-compile everything
make renew

SUCCESS: GiBUU.x generated.

/trac/wiki/compiling

if something went wrong...

https://gibuu.hepforge.org/trac/wiki/compiling

Updating the code via svnUpdating the code via svn

from time to time there will be changes in the code
(bugfixes, new features, …)

latest release: GiBUU 2017 (Oct. 29, 2017)

you should keep your local copy of the code up to date

do in the code directory:

svn update

check output for modified files and conflicts

after updating, you need to recompile

make

HEPFORGE UPGRADE 2018

Running the codeRunning the code

after successful compilation, there is the executable
 ./objects/GiBUU.x (linked also ./testRun/GiBUU.x)

run the executable with input and output files

./GiBUU.x < input.job > log.txt

either
run ‘in-tree’, i.e. in the directory testRun
cd testRun; ./GiBUU.x

copy it somewhere else

use it from somewhere else with full path

the file ‘log.txt’ will contain a log of GiBUU control & debug messages,
physics output will be written to other files

recommended,
since several output files
are generated

Input parametersInput parameters

input via the Fortran way: ‘jobcard’
 (= plain text file with data in some specific format)

 sample jobcards in ./testRun/jobCards

format: data in a ‘jobcard’ is grouped in ‘namelists’

capitalization (upper/lower case) does not matter

Input parametersInput parameters

there are a lot of input parameters!

documented at website
https://gibuu.hepforge.org/Documentation2019/code/robo_namelist.html
https://gibuu.hepforge.org/Documentation2019/namelists.pdf

most of them not relevant for beginners

most of them have reasonable default values

some relevant namelists for neutrino events:
‘input’ (basics)

‘neutrino_induced’

‘target’

‘EventOutput’ (producing particle output)

...

https://gibuu.hepforge.org/Documentation2019/code/robo_namelist.html

The Namelist ‘input’The Namelist ‘input’

the basic settings that need to be supplied

‘path_to_input’ must point to local path of buuinput directory

005_NeutrinoClean_T2K-numu.job

The Namelist ‘neutrino_induced’The Namelist ‘neutrino_induced’

infos about the elementary neutrino event

005_NeutrinoClean_T2K-numu.job

The Namelist ‘neutrino_induced’The Namelist ‘neutrino_induced’

nuXsectionMode: (required input)

:

The Namelist ‘neutrino_induced’The Namelist ‘neutrino_induced’

nuExp:

The Namelist ‘neutrino_induced’The Namelist ‘neutrino_induced’

nuExp: (cnt’d)

99 user defined flux

The Namelist ‘target’ etc.The Namelist ‘target’ etc.

infos about the nucleus as target

analytic density treatment

005_NeutrinoClean_T2K-numu.job

Analysis strategiesAnalysis strategies

‘on-line’ analysis directly inside GiBUU
direct analysis of desired quantity during the simulation

directly produce histograms etc.

no intermediate particle output

advantage: access to all internal information

disadvantage: needs recompilation for changes

mainly only for developers

‘off-line’ analysis
output all particles/events

LesHouches/ROOT format, proprietary format

analysis may be changed after simulation run

disadvantage: may produce large amount of data

GiBUU tends to be ‘silent’ by default

1) on-line analysis1) on-line analysis

inclusive output

final state analysis

+ 4 other namelists

~80 parameters produced output:
~ 2500 files / 650 MB

2a) off-line analysis2a) off-line analysis

neutrino events:
due to historical reasons also proprietary event format

writes file ‘FinalEvents.dat’:

1: Run
2: Event
3: ID 4: Charge
5: perweight
6-8: position(1:3)
9-12: momentum(0:3)
13: history
14: production_ID (1=QE, 2=Delta, …, 34=2p2h)
15: Enu

includes:
• outgoing lepton
• hit nucleon (for docu purpose)

sensitive to input parameters
 defining cuts !!!

2b) The Namelist ‘EventOutput’2b) The Namelist ‘EventOutput’

generate particle output

output only for perturbative particles

file(s) generated ‘EventOutput.Pert.*.lhe’

possible formats:
1 = LesHouches http://arxiv.org/abs/hep-ph/0609017

2 = OSCAR 2013 http://phy.duke.edu/~jeb65/oscar2013

3 = Shanghai 2014 http://www.physics.sjtu.edu.cn/hic2014/node/12

4 = ROOT

005_NeutrinoClean_T2K-numu.job

http://arxiv.org/abs/hep-ph/0609017
http://phy.duke.edu/~jeb65/oscar2013
http://www.physics.sjtu.edu.cn/hic2014/node/12

Output format ‘Les Houches’Output format ‘Les Houches’

XML-like event format

named after a town in France

basic structure:

arXiv:hep-ph/0609017v1

Output format ‘Les Houches’ (2)Output format ‘Les Houches’ (2)

line 1: N=number of lines, 0, weight, boring zeros

following: N lines, representing one particle each
columns: 1 = ID (PDG code), 7-9 = px,y,z, 10 = E, 11 = mass

last line: comment
‘magic number’ 5 = special info for neutrino events
eventtype, weight, momLepIn(0:3), momLepOut(0:3), momNuc(0:3)

eventtype: 1 = QE, 2-31 = resonance, 32 = 1pi, ...

Analysis using ‘Les Houches’Analysis using ‘Les Houches’

#!/usr/bin/env python3

from pylhef import *

data = read("EventOutput.Pert.00000001.lhe")

sigmatot = 0
sigmapi = 0
for ev in data.events:
 sigmatot += ev.weight
 for part in ev.particles:
 if (part.id==211):
 sigmapi += ev.weight

print("sigmatot = ",sigmatot)
print("sigmapi = ",sigmapi)

https://github.com/jrvidal/pylhef

sum up the weights!

sigmatot = 0.7087205200450297
sigmapi = 0.17053788931443

https://github.com/jrvidal/pylhef

Output format ‘ROOT’Output format ‘ROOT’

same info as in LesHouches files

needs:
working ROOT installation

building RootTuple library (included in GiBUU)

linking GiBUU with RootTuple

setting ‘EventFormat = 4’ in Jobcard

… (I have no experience with ROOT; input/feedback welcome!!!)

work in progress:
 patch to additionally write positional info

‘Tuning’‘Tuning’

modify cross sections of different channels/eventtypes:
multiply perweights with a factor

2p2h on basis of structure functions:
easy changeable

implement own processes/particles:
difficult

… ?

Event output
please contact me!!!

