THE GIBUU TRANSPORT TUTORIAL (PART 1)

Janus Weil

FIAS, Frankfurt

HADES Winter School Kloster Höchst, Feb. 2014

GiBUU

The Giessen Boltzmann-Uehling-Uhlenbeck Project

- short introduction to general ideas of kinetic theory
- give a basic understanding of how a transport simulation works
- provide a practical introduction to running numerical transport simulations with the GiBUU code
- enable students to run simulations of p+A and A+A reactions in the few-GeV regime
- understand important input parameters of the model
- learn to interpret and analyze the produced output
- cannot cover whole model, but at least provide a baseline for further investigations

OVERVIEW

Part I (Tue, Feb. 25)

- transport basics
- introduction to the model
- what physics is included
- preparations, getting started
- basic input parameters and output format

Part II (Wed, Feb. 26)

- running simple collisions (p+p)
- analyzing output
- varying input parameters
- time evolution, potentials/EOS, ...
- nuclear reactions (p+A and A+A)
- advanced topics

MODEL INTRO: WHAT GIBUU CAN DO

- GiBUU: The Giessen BUU model (traditionally developed at University of Giessen, now: most contributors scattered around Giessen and Frankfurt)
- flexible tool for numerical simulations of nuclear reactions
- can handle various types of reactions:
 - elementary: pp, pn ('input')
 - electroweak: γA , eA, νA
 - hadronic: pA, πA
 - heavy-ion: AA
- $\bullet\,$ energies: $\sim\,$ tens of MeV tens of GeV
- based on the Boltzmann-Uehling-Uhlenbeck (BUU) equation: propagation and collisions of particles in a mean field
- degrees of freedom: hadrons (various flavors of baryons and mesons)
- similar models: UrQMD, HSD, IQMD, BRoBUU, ...

- GiBUU = The Giessen BUU model
- 'official' pronounciation: ghee bee you you
- popular alternatives:
 - gee bee you you (as in "Bee Gees")
 - giii buuh (a la ''Hui-Buh'')

pick whatever suits your tongue ;)

BASICS: SOME KINETIC THEORY

- distr. function f(x, p) with $x = (t, \vec{x}), p = (E, \vec{p})$
- describes (density) distribution of particles in phase space
- number of particles in a given phase-space volume: $\Delta N = f(x, p) \Delta^3 x \Delta^3 p$
- we can set up one distribution function for each particle species: f_N , f_{π} , f_{Δ} , ...
- continuity equation for free noninteracting particles:

$$p^{\mu}\partial_{\mu}f(x,p)=0$$

(free straight-line propagation of particles, no collisions)

• adding external force (mean-field potential): Vlasov equ.

$$\left[\partial_t + (\nabla_p E)\nabla_r - (\nabla_r E)\nabla_p\right]f(x,p) = 0$$

(propagation through mean field without collisions)

- forget about mean fields, but add collisions ...
- continuity equ. + collision term \Rightarrow Boltzmann eq.

$$p^{\mu}\partial_{\mu}f(x,p) = C(x,p)$$

• collision integral C has gain and loss term

$$C(x, p) = C_{gain}(x, p) + C_{loss}(x, p)$$

 including mean field and collision term yields the Boltzmann-Uehling-Uhlenbeck (BUU or VUU) equation

$$\left(\partial_t + (\nabla_{\vec{p}}H_i)\nabla_{\vec{r}} - (\nabla_{\vec{r}}H_i)\nabla_{\vec{p}}\right)f_i(\vec{r},t,\vec{p}) = C[f_i,f_j,...]$$

collision term also includes Pauli blocking (quantum effect)

THE BOLTZMANN-UEHLING-UHLENBECK EQUATION

 BUU equ. describes space-time evolution of phase-space density f_i(r, t, p):

 $\left(\partial_t + (\nabla_{\vec{p}}H_i)\nabla_{\vec{r}} - (\nabla_{\vec{r}}H_i)\nabla_{\vec{p}}\right)f_i(\vec{r},t,\vec{p}) = C[f_i,f_j,\ldots]$

- index *i* represents particle species (N, Δ , π , ρ , ...) \Rightarrow one equ. for each species
- Hamiltonian H_i:
 - hadronic mean fields (Skyrme-like or RMF)
 - Coulomb, "off-shell potential"
- collision term C:
 - decays and scattering processes (2- and 3-body)
 - low energy: resonance model, high energy: string fragment.
- all equations coupled through collision term and mean fields
- semi-classical: not all quantum effects included

DEGREES OF FREEDOM: HADRONS!

- GiBUU is a purely hadronic model
- no partonic phase
- leptons usually not 'transported' (but: initial eN, νN , γN interactions, leptonic and photonic decays)
- GiBUU includes a good part of the whole hadronic zoo (currently 61 baryons and 22 mesons)
- most known states made of of u,d,s,c quarks included (currently no b)
- in principle we need:
 - cross sections for collisions among all of them, at all possible energies (often not known precisely or no data available)
 - mean-field potentials for each particle species (often also not well-known)
- often experiments are set up to measure these quantities (examples: ωN cross section, Kaon potential, ...)
- ullet \Rightarrow put some hypothesis into model and compare to data

PARTICLE SPECIES AND ID CODES

particle	mass	width	GiBUU ID	PDG IDs
N	0.983	0	1	p=2212, n=2112
Δ	1.232	0.118	2	2224, 2214, 2114, 1114
N*			3-18	
Δ^*			19-31	
Λ	1.116	0	32	3122
Σ	1.189	0	33	3222,3212,3112
Λ*, Σ*			34-52	
π	0.138	0	101	$\pi^+ = 211, \ \pi^0 = 111, \ \pi^- = -211$
η	0.547		102	
ρ	0.775	0.149	103	213,113,-213
σ			104	
ω	0.782	0.004	105	
η'	0.957		106	
K	0.496	0	110	$K^+ = 321, \ K^0 = 311$
Ē	0.496	0	111	$K^-=-321,\ ar{K}^0=-311$

... and more. Full list at:

https://gibuu.hepforge.org/trac/wiki/ParticleIDs

 idea: approximate full phase-space distribution by a sum of Delta-functions:

$$f(ec{r},t,ec{p})\propto \sum_i \delta(ec{r}-ec{r_i}(t))\delta(ec{p}-ec{p_i}(t))$$

- each Delta-function represents one particle with a sharp position and momentum
- mental picture: particles as 'billard balls' (behaving almost like classical particles)
- sufficiently large number of test particles needed to obtain a good approximation

- to solve the BUU equation numerically, the time axis is discretized
- collisions only happen at discrete time steps, in between: propagation through mean fields
- typical time-step size: $\Delta t = 0.2 \, {
 m fm}/c$
- start at t = 0 and run a number of time steps (N) until $t_{max} = N \cdot \Delta t$
- typically: $t_{max} pprox 20 100 \, {
 m fm}/c \quad \Rightarrow \quad N pprox 100 500$

MEAN-FIELD POTENTIALS

- GiBUU has can handle two types of mean-field potentials:
 - non-relativistic Skyrme-type potentials
 - relativistic mean fields (RMF)
- in the most general form a potential can enter the single-particle energy like:

$$H = \sqrt{(m+V)^2 + (ec{p} - ec{U})^2 + U_0}$$

- RMF potential is Lorentz vector $U^{\mu}=(U_0,ec{U})$
- Skyrme potential enters as U₀ only (non-rel), and is bound to a special frame (local rest frame)
- scalar potential $V (\rightarrow \mathsf{mass \ shift})$

$$U_{0}(x,\vec{p}) = A\frac{\rho}{\rho_{0}} + B\left(\frac{\rho}{\rho_{0}}\right)^{\gamma} + \frac{2C}{\rho_{0}}\sum_{i=p,n}\int \frac{gd^{3}p'}{(2\pi)^{3}}\frac{f_{i}(x,\vec{p}')}{1 + (\vec{p} - \vec{p}')^{2}/\Lambda^{2}} \\ + d_{symm}\frac{\rho_{p}(x) - \rho_{n}(x)}{\rho_{0}}\tau_{i}$$

- defined in local rest frame (LRF), where spatial baryon current vanishes $(\vec{j} = 0)$
- six parameters: A, B, γ, C, Λ, d_{symm}
- fixed to
 - nuclear binding energy of 16 MeV at $\rho=\rho_{\rm 0}$ in isospin-sym. matter
 - nuclear-matter incompressibility $K = 200 380 \,\mathrm{MeV}$

- proper relativistic mean-field description
- based on (nonlinear) Walecka-type Lagrangian:

$$\begin{split} \mathcal{L} = \bar{\Psi} \left[\gamma_{\mu} (i\partial^{\mu} - g_{\omega}\omega^{\mu} - g_{\rho}\vec{\tau}\vec{\rho}^{\mu} - \frac{e}{2}(1+\tau^{3})A^{\mu}) - m_{N} - g_{\sigma}\sigma \right] \Psi \\ + \frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - U(\sigma) - \frac{1}{4}\Omega_{\mu\nu}\Omega^{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega^{2} - \frac{1}{4}\vec{R}_{\mu\nu}\vec{R}^{\mu\nu} \\ + \frac{1}{2}m_{\rho}^{2}\vec{\rho}^{2} - \frac{1}{16\pi}F_{\mu\nu}F^{\mu\nu} \end{split}$$

• theoretically cleaner, but computationally more demanding

EQUATION OF STATE

- HM: hard momentum-dependent Skyrme
- SM: soft momentum-dependent Skyrme
- RMF: relativistic mean-fields (Walecka)

• contains one-, two- and three-body collisions

$$C = C_{1 \to X} + C_{2 \to X} + C_{3 \to X} + \dots$$

- $C_{1 \rightarrow X}$: resonance decays
- $C_{2\to X}$: proper two-body collisions
 - elastic and inelastic
 - any number of particles in final state: $X \ge 1$
 - baryon-meson, baryon-baryon, meson-meson
- $C_{3 \rightarrow X}$: three-body coll. (only relevant at high densities)
- at low energies: cross sections based on resonance excitations (e.g. $\pi N \rightarrow N^*$, $NN \rightarrow NN^*$)
- at high energies: string fragmentation (hard parton scattering + formation and decay of 'flux tube')

- πN scattering cross section shows clear resonance peaks below $\sqrt{s} \approx 2 \text{ GeV}$
- "resonance regime": excitation of N* and Δ* states
- cross section obtained by Breit-Wigner formula
- above 2 GeV: cross section is flat, different mechanism (non-resonant)
- typically described by string-fragmentation models (e.g. Pythia)
- in GiBUU: transition between resonance model and string frag. at $\sqrt{s} = 2.2 \pm 0.2 \,\mathrm{GeV}$

RESONANCE MODEL

Г

- all resonance parameters, decays modes and width parametriz. taken from: Manley/Saleski, Phys. Rev. D 45 (1992)
- Manley: PWA of $\pi N \rightarrow \pi N$ and $\pi N \rightarrow 2\pi N$ data
- important point: consistency! (coupled-channel constraints)

		M_0	Γ_0	$ M^2 /1$	$6\pi [\mathrm{mb}\mathrm{GeV}^2]$			bra	nching ratio	in %		
	rating	[MeV]	[MeV]	NR	ΔR	πN	ηN	$\pi \Delta$	ρN	σN	$\pi N^*(1440)$	$\sigma \Delta$
$P_{11}(1440)$	****	1462	391	70		69		22_P	_	9		
$S_{11}(1535)$	***	1534	151	8	60	51	43		$2_{S} + 1_{D}$	1	2	
$S_{11}(1650)$	****	1659	173	4	12	89	3	2_D	3_D	2	1	
$D_{13}(1520)$	****	1524	124	4	12	59		$5_{S} + 15_{D}$	21_S			
$D_{15}(1675)$	****	1676	159	17		47		53_D				
$P_{13}(1720)$	*	1717	383	4	12	13			87_{P}			
$F_{15}(1680)$	****	1684	139	4	12	70	_	$10_P + 1_F$	$5_P + 2_F$	12		
P ₃₃ (1232)	****	1232	118	OBE	210	100				_		
$S_{31}(1620)$	**	1672	154	7	21	9		62_D	$25_S + 4_D$			
$D_{33}(1700)$	*	1762	599	7	21	14		$74_{S} + 4_{D}$	8_S			
$P_{31}(1910)$	****	1882	239	14		23					67	10_P
P ₃₃ (1600)	***	1706	430	14		12		68_{P}			20	
$F_{35}(1905)$	***	1881	327	7	21	12		1_P	87_P			
F ₃₇ (1950)	****	1945	300	14		38		18_{F}				44_F

$$\begin{split} \Gamma_{R \to ab}(m) &= \Gamma^0_{R \to ab} \frac{\rho_{ab}(m)}{\rho_{ab}(M^0)} \\ \rho_{ab}(m) &= \int \mathrm{d} p_a^2 \mathrm{d} p_b^2 \mathcal{A}_a(p_a^2) \mathcal{A}_b(p_b^2) \frac{p_{ab}}{m} B^2_{L_{ab}}(p_{ab}R) \mathcal{F}^2_{ab}(m) \end{split}$$

STRING FRAGMENTATION: PYTHIA

- idea: hard qq scattering (pQCD) creates a color flux tube ('string'), which then fragments into hadrons (via qq pair production)
- high-energy model (10 GeV ... TeV)
- breaks down at low energies
- popular implementation: PYTHIA (Lund string model)

- includes a few resonances (Δ, ρ, ...) but not all the higher states (N*, Δ*)
- phenomenological 'fragmentation function' determines when and how the string breaks
- parameters fitted to reproduce data (may not be universal, different 'tunes' available)

BAR-BAR COLLISIONS

- also for NN collisions: low-energy regime dominated by resonance production
- but: no nice peaks due to two-body kinematics
- not fully clear how far resonance approach will work
- $NN \rightarrow NR, \Delta R \ (R = \Delta, N^*, \Delta^*)$
- all π , η and ρ mesons produced via R decays (ω , ϕ : non-res.)
- good descr. of total NN cross sections up to $\sqrt{s} \approx 3.4 \, GeV$

J. WEIL THE GIBUU TRANSPORT TUTORIAL (PART 1)

RESONANCE PRODUCTION

• $NN \rightarrow N\Delta$: OBE model [Dmitriev et al, NPA 459 (1986)]

 other resonances produced via phase-space approach (constant matrix elements), Teis Z. Phys. A 356, 1997:

$$\sigma_{NN \to NR} = \frac{C_I}{p_i s} \frac{|\mathcal{M}_{NR}|^2}{16\pi} \int \mathrm{d}\mu \mathcal{A}_R(\mu) p_F(\mu)$$

$$\sigma_{NN \to \Delta R} = \frac{C_I}{p_i s} \frac{|\mathcal{M}_{\Delta R}|^2}{16\pi} \int \mathrm{d}\mu_1 \mathrm{d}\mu_2 \mathcal{A}_{\Delta}(\mu_1) \mathcal{A}_R(\mu_2) p_F(\mu_1, \mu_2)$$

• lately: introduced angular distributions $d\sigma/dt = b/t^a$, exponents *a* determined from HADES data

NN COLLISIONS IN DIFFERENT MODELS

 baryon-baryon collisions at low energies: resonance models vs. string fragmentation

- HADES energy range is in the resonance regime
- we need one consistent model for the whole energy range!

STRANGENESS PRODUCTION

- at low energies, Kaons production probably also dominated by res. formation
- but: BRs not so well known, no Kaon data included in Manley analysis
- therefore: GiBUU does not produce Kaons in two-step processes $NN \rightarrow NN^* \rightarrow NYK$, but in direct three-body production $NN \rightarrow NYK$
 - cross sections originally calculated by Tsushima et al. in eff. Lagrangian model via resonance excitation
 - parametrization of these cross sections used in GiBUU:

$$\sigma(BB o BYK) = a \left(rac{s}{s_0} - 1
ight)^b \left(rac{s}{s_0}
ight)^c$$

 $B = N, \Delta; Y = \Lambda, \Sigma; s_0$: threshold; a, b, c: (free) parameters

STRANGENESS CHANNELS

No.	Reaction	$s_0 ~({\rm GeV^2})$	a(mb)	b	с
1	$pp \rightarrow p\Lambda K^+$	6.504	1.879	2.176	5.264
2	$pn \rightarrow n\Lambda K^+$	6.504	2.812	2.121	4.893
3	$pp \rightarrow p\Sigma^0 K^+$	6.904	5.321	2.753	8.510
4	$nn \rightarrow n\Sigma^{-}K^{+}$	6.904	7.079	2.760	8.164
5	$pn \rightarrow n\Sigma^0 K^+$	6.904	6.310	2.773	7.820
6	$np \rightarrow p\Sigma^{-}K^{+}$	6.904	11.02	2.782	7.674
7	$pp \rightarrow n\Sigma^+K^+$	6.904	1.466	2.743	3.271
8	$pp \rightarrow \Delta^- \Lambda K^+$	8.085	6.166	2.842	1.960
9	$pp \rightarrow \Delta^{++}\Sigma^{-}K^{+}$	8.531	10.00	2.874	2.543
10	$\Delta^{++}n \rightarrow p\Lambda K^{+}$	6.504	8.337	2.227	2.511
11	$\Delta^- p \rightarrow n \Sigma^- K^+$	6.904	52.72	2.799	6.303
12	$\Delta^{++}p \rightarrow \Delta^{++}\Lambda K^{+}$	8.085	2.704	2.303	5.551
13	$\Delta^+ n \rightarrow \Delta^0 \Lambda K^+$	8.085	0.312	2.110	2.165
14	$\Delta^+ p \rightarrow \Delta^+ \Lambda K^+$	8.085	2.917	2.350	6.557
15	$\Delta^{++}n \rightarrow \Delta^{++}\Sigma^{-}K^{+}$	8.531	10.33	2.743	8.915
16	$\Delta^0 p \rightarrow \Delta^+ \Sigma^- K^+$	8.531	2.128	2.843	5.986
17	$\Delta^+ n \rightarrow \Delta^+ \Sigma^- K^+$	8.531	10.57	2.757	10.11
18	$\Delta^{++}p \rightarrow \Delta^{++}\Sigma^0 K^+$	8.531	10.30	2.748	9.321
19	$\Delta^+ n \rightarrow \Delta^0 \Sigma^0 K^+$	8.531	1.112	2.846	5.943
20	$\Delta^+ p \rightarrow \Delta^+ \Sigma^0 K^+$	8.531	10.62	2.759	10.20
21	$\Delta^+ p \rightarrow \Delta^0 \Sigma^+ K^+$	8.531	0.647	2.830	3.862
22	$\Delta^+\Delta^{++} \rightarrow \Delta^{++}\Lambda K^+$	8.085	1.054	2.149	7.969
23	$\Delta^0 \Delta^{++} \rightarrow \Delta^+ \Lambda K^+$	8.085	0.881	2.150	7.977
24	$\Delta^0 \Delta^+ \rightarrow \Delta^0 \Lambda K^+$	8.085	0.291	2.148	7.934
25	$\Delta^{++}\Delta^0 \rightarrow \Delta^{++}\Sigma^- K^+$	8.531	3.532	2.953	12.06
26	$\Delta^-\Delta^0 \rightarrow \Delta^-\Sigma^-K^+$	8.531	7.047	2.952	12.05
27	$\Delta^0 \Delta^{++} \rightarrow \Delta^+ \Sigma^0 K^+$	8.531	2.931	2.952	12.03
28	$\Delta^-\Delta^+ \rightarrow \Delta^0 \Sigma^- K^+$	8.531	5.861	2.952	12.04

J. Weil

- large number of channels!
- Tsushima parameters not always fully compatible with data
- some had to be refitted to HADES data recently

- dileptons are rare probes: $BR(h
 ightarrow e^+e^-) pprox 10^{-5}$
- special treatment is necessary: "shining" approach
- hadrons continuously emit ('virtual') lepton pairs, those are 'weighted down' to fit the BR
- leptons not 'propagated', rescattering with hadrons neglected
- dilepton production has to be turned on separately
- included channels:

•
$$V \to e^+e^-$$
 (with $V = \rho, \omega, \phi$)
• $P \to \gamma e^+e^-$ (with $P = \pi^0, \eta, \eta'$)

- $\omega \to \pi^0 e^+ e^-$
- $\Delta
 ightarrow {\it N}e^+e^-$
- $R \rightarrow \rho N \rightarrow N e^+ e^-$?
- Bremsstrahlung in soft-photon approximation

references for further details:

'GiBUU review paper':

O. Buss et al., Phys. Rept. 512 (2012) 1-124

- many specialized papers and theses: https://gibuu.hepforge.org/trac/wiki/Paper
- documentation on website
- code itself!

end of general intro

questions?

J. WEIL THE GIBUU TRANSPORT TUTORIAL (PART 1)