STRANGENESS IN GIBUU

Janus Weil

FIAS

Strangeness Workshop Heidelberg, 21. July 2014

FIAS Frankfurt Institute for Advanced Studies

- the GiBUU model
- particle production at SIS energies
- strange & non-strange, resonances
- Kaon potential
- comparison to HADES pp / pNb at 3.5 GeV
- current & future developments

THE GIBUU MODEL

- hadronic transport model (microscopic, non-equilibrium), based on the BUU equation
- developed for 20+ years in Giessen (in the group of U. Mosel)
- current contributors: T. Gaitanos, K. Gallmeister, A. Larionov, J. Weil, U. Mosel
- unified framework for electroweak (γA , eA, νA) and hadronic (pA, πA , AA) nuclear reactions
- rather modern Fortran95 code base (\sim 200.000 LOC)
- publicly available releases (open source)
- O. Buss et al., Phys. Rep. 512 (2012), http://gibuu.hepforge.org

The Giessen Boltzmann-Uehling-Uhlenbeck Project

THE BUU EQUATION

 BUU equ.: space-time evolution of phase-space density F (via gradient expansion from Kadanoff-Baym)

$$\frac{\partial(p_0-H)}{\partial p_{\mu}}\frac{\partial F(x,p)}{\partial x^{\mu}} - \frac{\partial(p_0-H)}{\partial x_{\mu}}\frac{\partial F(x,p)}{\partial p^{\mu}} = C(x,p)$$

 degrees of freedom: hadrons (61 baryons and 22 mesons included)

- Hamiltonian *H*:
 - hadronic mean fields (Skyrme or RMF), Coulomb, ...
- collision term C(x, p): decays and collisions
 - low energy: resonance-model approach
 - high energy: string fragment. (Pythia)
- solve numerically via test-particle method:

$$F = \sum_{i} \delta(\vec{r} - \vec{r}_{i}) \delta(p - p_{i})$$

PARTICLE PRODUCTION AT SIS: RESONANCES VS STRINGS

• string the shold for mB: $\sqrt{s} = 2.2 \pm 0.2 \,\text{GeV} \approx m_R^{max}$ (rougly corresponds to heaviest resonances)

• for BB:
$$\sqrt{s} = 3.4 \pm 0.1 \,\text{GeV}$$
,
between $m_N + m_R^{max} \approx 3.1 \,\text{GeV}$ and $2m_R^{max} \approx 4.4 \,\text{GeV}$

STRANGE VS. NON-STRANGE SECTOR

non-strange:

- resonance production: $NN \rightarrow NR, \Delta R$
- **2** subsequent resonance decay: $R \to \pi N, \eta N, \rho N, \sigma N, \pi \Delta, \pi N^*$ (no strange decays here)
- ø possibly: dilepton decays

strangeness:

- direct 3-body production: $NN \rightarrow BYK$ ($B = N, \Delta, Y = \Lambda, \Sigma, K = K^+, K^0$)
- I cross sections parametrized by Tsushima et al.
- based on R prod. and decay, but in the end: just a parametrization
 - somewhat inconsistent (explicit two-step production for non-strange mesons, but direct 3-body production for Kaons)
 - but: no 'overlap', both sectors are completely separated

NON-STRANGE RESONANCE MODEL

- assumption: inel. NN cross section is dominated by production and decay of baryonic resonances
- $NN \rightarrow NR, \Delta R \ (R : \Delta, 7 \ N^* \text{ and } 6 \ \Delta^* \text{ states})$
- based on Teis RM [Z. Phys. A 356, 1997] with several extensions
- all π , η and ρ mesons produced via R decays (ω , ϕ : non-res.)
- good descr. of total NN cross sections up to $\sqrt{s} \approx 3.5 GeV$

JANUS WEIL STRANGENESS IN GIBUU

RESONANCE PRODUCTION

• $NN \rightarrow N\Delta$: OBE model [Dmitriev et al, NPA 459 (1986)]

 other resonances produced via phase-space approach (constant matrix elements):

$$\sigma_{NN \to NR} = \frac{C_I}{p_i s} \frac{|\mathcal{M}_{NR}|^2}{16\pi} \int \mathrm{d}\mu \mathcal{A}_R(\mu) p_F(\mu)$$

$$\sigma_{NN \to \Delta R} = \frac{C_I}{p_i s} \frac{|\mathcal{M}_{\Delta R}|^2}{16\pi} \int \mathrm{d}\mu_1 \mathrm{d}\mu_2 \mathcal{A}_{\Delta}(\mu_1) \mathcal{A}_R(\mu_2) p_F(\mu_1, \mu_2)$$

• lately: introduced angular distributions $d\sigma/dt = b/t^a$, $a \approx 1$ (Eur.Phys.J. A502014)

RESONANCE PARAMETERS

- all resonance parameters & decays modes taken from: Manley/Saleski, Phys. Rev. D 45 (1992)
- Manley: PWA including $\pi N \rightarrow \pi N$ and $\pi N \rightarrow 2\pi N$ data
- no strangeness data included

		M_0	Γ_0	$ M^2 /1$	$6\pi [\mathrm{mb}\mathrm{GeV}^2]$			bra	nching ratio	in %		
	rating	[MeV]	[MeV]	NR	ΔR	πN	ηN	$\pi \Delta$	ρN	σN	$\pi N^{*}(1440)$	$\sigma \Delta$
$P_{11}(1440)$	****	1462	391	70	_	69		22_P	_	9		
$S_{11}(1535)$	***	1534	151	8	60	51	43		$2_{S} + 1_{D}$	1	2	
$S_{11}(1650)$	****	1659	173	4	12	89	3	2_D	3_D	2	1	
$D_{13}(1520)$	****	1524	124	4	12	59		$5_{S} + 15_{D}$	21_{S}			
$D_{15}(1675)$	****	1676	159	17		47		53_D		_		
$P_{13}(1720)$	*	1717	383	4	12	13			87_{P}			
$F_{15}(1680)$	****	1684	139	4	12	70		$10_P + 1_F$	$5_P + 2_F$	12		
P ₃₃ (1232)	****	1232	118	OBE	210	100	_			_		_
$S_{31}(1620)$	**	1672	154	7	21	9		62_D	$25_S + 4_D$			
$D_{33}(1700)$	*	1762	599	7	21	14		$74_{S} + 4_{D}$	8_S			
$P_{31}(1910)$	****	1882	239	14		23					67	10_P
P ₃₃ (1600)	***	1706	430	14		12		68_P			20	
F ₃₅ (1905)	***	1881	327	7	21	12		1_P	87_P			
F ₃₇ (1950)	****	1945	300	14	_	38	_	18_F	—	—	_	44_F

- no strangeness via explicit resonance production
- Manley assigns some ΛK decay channels, but those resonances are not produced in NN collisions

STRANGENESS: TSUSHIMA MODEL

	× K	Resonance (J ^P)	Width (MeV)	Decay channel	Branching ratio	Adopted value	GiBUU
3		$N(1650)(\frac{1}{3})$ NN piN	150	Νπ	0.60 - 0.80	0.700	0.89
	$\langle \rangle$			Nn	0.03 - 0.10	0.065	0.03
				$\Delta \pi$	0.03 - 0.07	0.050	0.02
	٦.٢			ΛK	0.03 - 0.11	0.070	
	Y	$N(1710)(\frac{1}{2}^+)$ piN	100	Νπ	0.10 - 0.20	0.150	0.09
				Νη	0.20 - 0.40	0.300	
	R			Νρ	0.05 - 0.25	0.150	0.03
1	π, n, ρ			$\Delta \pi$	0.10 - 0.25	0.175	0.49
				ΛK	0.05 - 0.25	0.150	0.37
	······			ΣK	0.02 - 0.10	0.060	
		$N(1720)(\frac{3}{2}^+)$ NN, piN	150	$N\pi$	0.10 - 0.20	0.150	0.13
				$N\eta$	0.02 - 0.06	0.040	
				$N\rho$	0.70 - 0.85	0.775	0.87
	≜			$\Delta \pi$	0.05 - 0.15	0.100	
				ΛK	0.03 - 0.10	0.065	
				ΣK	0.02 - 0.05	0.035	
		$\Delta(1920)(\frac{3}{2}^{+})$ piN	200	$N\pi$	0.05 - 0.20	0.125	0.02
	1			ΣK	0.01 - 0.03	0.020	
	B₂						

- Tsushima et al. calculated Kaon production via intermediate resonances in eff. Lagr. model (OBE), Phys. Rev. C59 (1999)
- $BB \rightarrow BYK \ (B = N, \Delta, \ Y = \Lambda, \Sigma, \ K = K^+, K^0)$
- final results are parametrized as $\sigma = a(s/s_0 1)^b(s/s_0)^c$
- we just use the parametrization!

HADES: $pp \rightarrow K_S^0 X @ 3.5 \text{ GeV}$

- original model: Tsushima et al. (dashed)
- modified to fit elem. HADES Kaon data (solid lines):
 - parameters had to be adjusted for some channels
 - 5-body channels added $(pp \rightarrow \Delta Y^*K \rightarrow \pi\pi NYK)$
- arXiv:1404.7011

Janus Weil

STRANGENESS IN GIBUU

KAON POTENTIAL

• ChPT kaon potential: $m_K^* = \sqrt{m_K^2 - \frac{\Sigma_{KN}}{f_{\pi}^2} \rho_s + V_{\mu} V^{\mu}}$ Brown/Rho, NPA596, 1996 Schaffner-Bielich, NPA625, 1997

- includes density and momentum dependence (non-linear)
- repulsive for K^+, K^0
- attractive for K^-, \overline{K}^0

•
$$U = E^* - E \approx 35$$
 MeV for K^+, K^0
at $\rho = \rho_0, \ \vec{p} = 0$

SECONDARY KN COLLISIONS

- left: K^+p ; right: K^-p
- good agreement with data, many channels contributing

HADES: $pNb \rightarrow K_s^0 X @ 3.5 \text{ GeV}$

- rap. spectrum mostly insensitive to potential in measured region (left)
- momentum spectra most sensitive in forward region (right)
- take ratio of two polar-angle bins to get rid of systematic uncertainties in abs. norm. (arXiv:1404.7011)

- systematics well under control
- good baseline from pp at same energy
- limited density ($ho \leq
 ho_0$)

- HADES *pNb* data show indications of repulsive K^0 potential
- consistent with ChPT potential of $U(\rho_0) = 35$ MeV
- cold nuclear matter setup has less systematic uncertainties than heavy-ion collisions
- (but: effects not quite as large)

ANNOUNCEMENT: GIBUU IS OPEN SOURCE!

- GiBUU had 'public releases' for some time, but they were only available after registration
- since last week: GiBUU release 1.6 is fully public, can be downloaded via anonymous svn checkout (w/o registr.)
- https://gibuu.hepforge.org/trac/wiki/svn
- development version continues to be private
- next open release 1.7 later this year

THE FUTURE: SMASH

- next-generation transport code, currently being developed in the group of Hannah Petersen at FIAS
- core tream: H. Petersen, J. Auvinen, M. Kretz, J. Weil (+students)
- aim: clean, modern and future-proof code, which takes advantage of modern computing arch. (multicore, heterogenous), written from scratch in C++
- current status: preparing internal version 0.4, ${\sim}20.000$ lines of C++ code
- first public release by next year?

The End

Thanks for your attention!