DILEPTON PRODUCTION AT SIS ENERGIES WITH THE GIBUU TRANSPORT MODEL

Janus Weil, Ulrich Mosel

(in collab. with H. van Hees & K. Gallmeister)

Lunch Club Seminar Giessen, 11.05.2012

OUTLINE

- Motivation: in-medium physics
- the GiBUU transport model
- dileptons from elementary reactions:

$$p + p, d + p$$

 $p + Nb$

```
see arXiv:1203.3557 [nucl-th]
```


dileptons from heavy-ion collisions:
 C + C
 Ar + KCI

MOTIVATION: HADRONS IN MEDIUM

- how do vector mesons behave inside a hadronic medium?
- Brown/Rho, Hatsuda/Lee: mass shift (restoration of chiral sym.) $m_V^*(\rho)/m_V \approx 1 - \alpha(\rho/\rho_0)$, $\alpha \approx 0.16 \pm 0.06$
- collisional broadening (LDA): $\Gamma_{coll} = \rho < v_{rel}\sigma_{VN} >$
- QCD sum rules (Leupold, NPA 628, 1998)
- coupling to resonances can introduce additional structures in the spectral function (Post, 2003)

V. Bernard, U.-G. Meissner / Vector and axial-vector mesons

How to study in-medium effects?

- ullet basic idea: observe decays $V \to ab$ inside the medium
- reconstruct in-medium mass from invariant mass of decay products: $m_V^* = \sqrt{(p_a + p_b)^2}$

we need:

- reasonably large medium ('cold' nucleus or 'fireball' from HIC)
- short meson lifetime + low momentum
- FSI of decay products should be small

WHY DILEPTONS? NO FSI!

- drawback of hadronic decay modes: strong final-state interaction of the decay products
- example: $\omega \to \pi^0 \gamma$ (measured by CBELSA/TAPS in photoproduction experiments)

J. Weil Dilepton production at SIS energies

The Dilepton Cocktail

hadronic sources contributing to the dilepton spectrum:

direct decays:							
٩	$ ho^{0} ightarrow e^{+} e^{-}$						
٩	$\omega ightarrow e^+e^-$						
٥	$\phi ightarrow e^+e^-$						
٩	$(\eta ightarrow e^+ e^-)$						

Dalitz decays:

- $\pi^{\rm 0} \rightarrow e^+ e^- \gamma$
- $\eta \rightarrow e^+ e^- \gamma$
- $\omega \to \pi^0 e^+ e^-$
- $\Delta
 ightarrow {\it Ne^+e^-}$
- $R \rightarrow Ne^+e^-$

other contributions:

- NN-Bremsstrahlung: $\textit{NN}
 ightarrow \textit{NN}e^+e^-$
- Bethe-Heitler process: $\gamma N \rightarrow Ne^+e^-$ (only in photoproduction)

...

THE DLS PUZZLE(S)

- how to explain the elementary (N+N) DLS dilepton spectra?
- are there additional medium effects in A+A?
- (still unsolved in 2012 ...)

UrQMD, Ernst et al., PRC 58 (1998)

THE GIBUU TRANSPORT MODEL

- BUU-type hadronic transport model
- unified framework for various types of reactions (γA , eA, νA , pA, πA , AA) and observables
- BUU equ.: space-time evolution of phase space density

$$\left(\partial_t + (\nabla_{\vec{p}}H_i)\nabla_{\vec{r}} - (\nabla_{\vec{r}}H_i)\nabla_{\vec{p}}\right)f_i(\vec{r}, t, \vec{p}) = I_{coll}[f_i, f_j, ...]$$

- Hamiltonian *H_i*:
 - hadronic mean fields, Coulomb, "off-shell potential"
- collision term I_{coll}:
 - decays and scattering processes (2- and 3-body)
 - low energy: resonance model, high energy: PYTHIA
- O. Buss et al., Phys. Rept. 512 (2012), http://gibuu.physik.uni-giessen.de

GiBUU

The Giessen Boltzmann-Uehling-Uhlenbeck Project

in GiBUU Strangeness production in pA reactions

Predictions for PANDA

A. Larionov, arXiv:1202.0748

Resonance Model

- assumption: inel. NN cross section is dominated by Res. production (at low energies)
- $NN \rightarrow NR, \Delta R \ (R : \Delta, 7 \ N^* \text{ and } 6 \ \Delta^* \text{ states})$
- based on Teis RM [Z. Phys. A 356, 1997] with several extensions
- all π , η and ρ mesons produced via R decays (ω , ϕ : non-res.)
- good descr. of total NN cross sections up to $\sqrt{s} \approx 3.5 GeV$

J. Weil Dilepton production at SIS energies

RESONANCE PRODUCTION

• $NN \rightarrow N\Delta$: OBE model (Dmitriev et al, NPA 459 (1986))

 other resonances produced via phase-space approach (constant matrix elements):

$$\sigma_{NN \to NR} = \frac{C_I}{p_i s} \frac{|\mathcal{M}_{NR}|^2}{16\pi} \int \mathrm{d}\mu \mathcal{A}_R(\mu) p_F(\mu)$$

$$\sigma_{NN \to \Delta R} = \frac{C_I}{p_i s} \frac{|\mathcal{M}_{\Delta R}|^2}{16\pi} \int \mathrm{d}\mu_1 \mathrm{d}\mu_2 \mathcal{A}_{\Delta}(\mu_1) \mathcal{A}_R(\mu_2) p_F(\mu_1, \mu_2)$$

I

all resonance parameters and decays taken from: Manley/Saleski, Phys. Rev. D 45 (1992)

		M_0	Γ_0	$ M^2 /1$	branching ratio in %							
	rating	[MeV]	[MeV]	NR	ΔR	πN	ηN	$\pi \Delta$	ρN	σN	$\pi N^{*}(1440)$	$\sigma \Delta$
$P_{11}(1440)$	****	1462	391	70		69		22_P		9	_	
$S_{11}(1535)$	***	1534	151	8	60	51	43		$2_{S} + 1_{D}$	1	2	
$S_{11}(1650)$	****	1659	173	4	12	89	3	2_D	3_D	2	1	_
$D_{13}(1520)$	****	1524	124	4	12	59		$5_{S} + 15_{D}$	21_S			
$D_{15}(1675)$	****	1676	159	17		47		53_D				
$P_{13}(1720)$	*	1717	383	4	12	13			87_{P}			
$F_{15}(1680)$	****	1684	139	4	12	70	_	$10_P + 1_F$	$5_P + 2_F$	12		
P ₃₃ (1232)	****	1232	118	OBE	210	100			_	_	_	—
$S_{31}(1620)$	**	1672	154	7	21	9		62_{D}	$25_S + 4_D$			
$D_{33}(1700)$	*	1762	599	7	21	14		$74_{S} + 4_{D}$	8_S	_		
$P_{31}(1910)$	****	1882	239	14		23					67	10_P
$P_{33}(1600)$	***	1706	430	14		12		68_{P}			20	
$F_{35}(1905)$	***	1881	327	7	21	12		1_P	87_{P}			
F ₃₇ (1950)	****	1945	300	14		38		18_{F}				44_F

$$\begin{split} \Gamma_{R \to ab}(m) &= \Gamma^0_{R \to ab} \frac{\rho_{ab}(m)}{\rho_{ab}(M^0)} \\ \rho_{ab}(m) &= \int \mathrm{d} p_a^2 \mathrm{d} p_b^2 \mathcal{A}_a(p_a^2) \mathcal{A}_b(p_b^2) \frac{p_{ab}}{m} B^2_{L_{ab}}(p_{ab}R) \mathcal{F}^2_{ab}(m) \end{split}$$

DILEPTON DECAYS

•
$$V \rightarrow e^+e^-$$
 (with $V = \rho, \omega, \phi$) via strict VMD: $\Gamma(\mu) \propto \mu^{-3}$

• $P \rightarrow \gamma e^+ e^-$ (with $P = \pi^0, \eta, \eta'$) from Landsberg (1985):

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\mu} = \frac{4\alpha}{3\pi} \frac{\Gamma_{P \to \gamma\gamma}}{\mu} \left(1 - \frac{\mu^2}{m_P^2}\right)^3 |F_P(\mu)|^2,$$

• $\omega
ightarrow \pi^0 e^+ e^-$ (Bratkovskaya et al., 1997):

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\mu} = \frac{2\alpha}{3\pi} \frac{\Gamma_{\omega \to \pi^0 \gamma}}{\mu} \left[\left(1 + \frac{\mu^2}{\mu_{\omega}^2 - m_{\pi}^2} \right)^2 - \frac{4\mu_{\omega}^2 \mu^2}{(\mu_{\omega}^2 - m_{\pi}^2)^2} \right]^{3/2} |F_{\omega}(\mu)|^2$$

• $\Delta \rightarrow N e^+ e^-$ (Krivoruchenko et al., 2002):

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\mu} = \frac{2\alpha}{3\pi\mu} \frac{\alpha}{16} \frac{(m_{\Delta} + m_N)^2}{m_{\Delta}^3 m_N^2} \sqrt{(m_{\Delta} + m_N)^2 - \mu^2} \left[(m_{\Delta} - m_N)^2 - \mu^2 \right]^{3/2} |F_{\Delta}(\mu)|^2$$

• but no $N^* o N e^+ e^-$ or $\Delta^* o N e^+ e^-!$ (to avoid double counting)

THE HADES DETECTOR AT GSI

- "High Acceptance Di-Electron Spectrometer"
- pp, pA, AA $ightarrow e^+e^-X$
- SIS: few-GeV regime (\sqrt{s} < 4 GeV)
- ullet mass resolution: ~ 15 MeV
- polar angle: $15^{\circ} < \theta < 85^{\circ}$
- opening angle cut: $\theta_{ee} > 9^{\circ}$
- better acceptance/resolution/statistics than DLS

- if we want to investigate in-medium effects, we better make sure we understand the dilepton signal from elementary collisions (in the vacuum)
- this is not a trivial task and represents the most important prerequisite for understanding the heavy-ion collisions
- HADES has measured:

- first try: using PYTHIA string model
- some tuning needed
- 'gap' at intermediate masses
- question: which process could fill this gap?

P+P at 3.5 GeV

- use em. transition form factor for Δ Dalitz decay
- naive VMD form factor would overshoot the data
- two-component quark model by Wan/lachello seems to give a good fit [Int. J. Mod. Phys. A 20 (2005)]
- but: is this really a proper model of the Δ FF?

P+P at 3.5 GeV

- now: use resonance model
- *ρ* production via baryonic resonances
- $R \rightarrow \rho N \rightarrow e^+ e^- N$
- low-mass part enhanced by light resonances (and $1/m^3$ factor from dilepton decay width)

P+P AT 3.5 GEV: RESONANCE CONTRIBUTIONS

- ρ channel is given by a mix
 of several resonance
 contributions
- shape depends on the mass of the resonance and angular momentum of the decay
- contributions of single resonances not well constrained, but good agreement in total
- cross check from πN mass spectra needed!

- again: resonance production gives improvement over phase-space ρ
- but: data suggest that relative strengths of resonance contributions are not quite right
- D₁₃(1520) underestimated, P₁₃(1720) overestimated?

$\rm P{+}P$ / $\rm D{+}P$ at 1.25 GeV

p + p at 1.25 GeV d + p at 1.25 GeV data 10¹ GiBUU tota data GiBUU tota $\pi^0 \rightarrow e^{\dagger}$ ⁻e 10¹ 10⁰ 10⁰ dơ/dm_{ee} [µb/GeV] dơ/dm_{ee} [µb/GeV] 10⁻¹ 10⁻¹ 10⁻² 10⁻² 10⁻³ 10⁻³ 10⁻⁴ 0.2 0.4 0.5 0.2 0 0.1 0.3 0.1 0.3 0.4 0.5 0.6 0.7 dilepton mass mee [GeV] dilepton mass mee [GeV]

- slight deviation in pion channel (ang. distr.?)
- p+p overall well described, d+p misses factor 2-10
- reason not completely clear, OBE models might help

P+NB at 3.5 GeV

- after p+p@3.5 is fixed: good overall agreement in p+Nb (without Δ FF!)
- moderate medium modifications (VM spectral functions)

${}^{12}C + {}^{12}C$ at 1.0 and 2.0 GeV

- C+C is a light system, can be described roughly by a superposition of NN collisions
- 2 GeV data well described by GiBUU
- some discrepancies at 1 GeV ("deuteron problem"?)

$^{40}Ar + {}^{39}K^{35}CI \text{ at } 1.76 \text{ GeV}$

- Ar+KCl seems to show some excess over NN (\sim factor 3)
- GiBUU with vacuum SF: similar discrepancy ⇒ room for in-medium effects

CONCLUSIONS

- elementary p+p reactions well understood with resonance model description (higher resonances are important!)
- some problems remaining in d+p (at low energies)
- p+Nb: good agreement with data (moderate medium modifications)
- heavy-ion reactions: some problems in C+C at 1 GeV investigation of medium effects in ArKCI (VM + Res) ¹⁹⁷Au + ¹⁹⁷Au at 1.25 GeV
- ⇒ both DLS puzzles still not completely solved, but we're getting closer (hopefully) ...