DILEPTON PRODUCTION IN TRANSPORT-BASED APPROACHES

Janus Weil

with H. van Hees, U. Mosel, S. Endres, M. Bleicher

Frankfurt Institute for Advanced Studies (FIAS)

Hot Quarks 2014

- Intro
 - dilepton physics
 - vector mesons in medium
- transport models (hadronic!)
 - basic principles
 - assumptions & input
- two approaches to dilepton production:
 - 'pure' transport (GiBUU)
 - coarse graining (UrQMD + Rapp SF)
- comparison to data
 - HADES
 - NA60
 - STAR

INTRO: DILEPTONS

- lepton pairs $(e^+e^-, \mu^+\mu^-)$ are an ideal probe to study phenomena at high densities and temp.
- in particular: modification of vector-meson spectral function in medium and chiral sym. restoration
- experiments: HADES, CBM, NA60, STAR/PHENIX, ALICE

VECTOR MESONS IN MEDIUM

- NA60 showed clearly: ρ^0 spectral function substantially broadened in medium (but no mass shift)
- mainly driven by baryonic effects (collisions with nucleons, coulping to resonances)
- largest effects at low energies (DLS/HADES), but: also most challenging ('DLS puzzle')

The GIBUU model

- hadronic transport model (microscopic, non-equilibrium)
- based on the Boltzmann-Uehling-Uhlenbeck (BUU) equation
- BUU equ.: space-time evolution of phase-space density F

$$\frac{\partial(p_0-H)}{\partial p_{\mu}}\frac{\partial F(x,p)}{\partial x^{\mu}} - \frac{\partial(p_0-H)}{\partial x_{\mu}}\frac{\partial F(x,p)}{\partial p^{\mu}} = C(x,p)$$

- degrees of freedom: hadrons
 (61 baryons and 22 mesons included)
- Hamiltonian H: contains hadronic mean fields etc
- collision term C: decays and collisions

low energy: res.-model, high energy: string fragment.

solve numerically via test-particle method:

 $F = \sum_i \delta(\vec{r} - \vec{r}_i) \delta(p - p_i)$

- code available as open source (http://gibuu.hepforge.org)
- review paper: O. Buss et al., Phys. Rep. 512 (2012)

RESONANCE MODEL

- at SIS energies: particle production dominated by resonance formation
- GiBUU res. model is based on Manley/Saleski PWA (Phys. Rev. D 45, 1992; including $\pi N \rightarrow \pi N / 2\pi N$ data)
- 13 N^*/Δ^* states excited in NN collisions

	$M_0 = \Gamma_0 = \mathcal{M}^2 /16\pi [\text{mb GeV}^2]$				branching ratio in %							
	rating	[MeV]	[MeV]	NR	ΔR	πN	ηN	$\pi \Delta$	ρN	σN	$\pi N^{*}(1440)$	$\sigma \Delta$
$P_{11}(1440)$	****	1462	391	70		69		22_{P}	—	9	_	
$S_{11}(1535)$	***	1534	151	8	60	51	43		$2_{S} + 1_{D}$	1	2	
$S_{11}(1650)$	****	1659	173	4	12	89	3	2_D	3_D	2	1	
$D_{13}(1520)$	****	1524	124	4	12	59		$5_{S} + 15_{D}$	21_S	_		
$D_{15}(1675)$	****	1676	159	17		47		53_D	_	_		
$P_{13}(1720)$	*	1717	383	4	12	13			87_P	_		
$F_{15}(1680)$	****	1684	139	4	12	70		$10_P + 1_F$	$5_P + 2_F$	12		
$P_{33}(1232)$	****	1232	118	OBE	210	100		_			_	
$S_{31}(1620)$	**	1672	154	7	21	9		62_D	$25_S + 4_D$			
$D_{33}(1700)$	*	1762	599	7	21	14		$74_{S} + 4_{D}$	8_S	_		
$P_{31}(1910)$	****	1882	239	14		23			_	_	67	10_{P}
$P_{33}(1600)$	***	1706	430	14		12		68_{P}	_	_	20	
$F_{35}(1905)$	***	1881	327	7	21	12	_	1_P	87_P	_		
$F_{37}(1950)$	****	1945	300	14		38		18_{F}	—	—		44_F

$R ightarrow e^+ e^- N$ Dalitz decays

• $R = \Delta, N^*, \Delta^*$ (baryonic resonances)

- photon couplings $(R \rightarrow \gamma N)$ known from photoproduction experiments $(\gamma N \rightarrow X)$
- can be extended to time-like region $(R \rightarrow \gamma^* N)$ via em. transition form factor (Krivoruchenko et al.)
- our assumption: strict VMD (baryons couple to em. sector only through ρ)

- in transport model: two-step treatment (factorization), intermediate ρ can be rescattered
- $\Delta(1232)$: introduce ho N coupling with on-shell BR of $5\cdot 10^{-5}$

HADES: PP RESULTS

- good agreement with elementary pp data
- significant contributions of baryonic resonances (N*, Δ*) via VMD-based Dalitz decays
- Δ : two treatments shown (VMD vs. QED)

SPS/RHIC VS SIS ENERGIES

'in-medium' physics at SPS connected to 'vacuum' physics at SIS!

HADES: NUCLEUS-NUCLEUS RESULTS

- on-shell transport (with vacuum spectral functions) already yields rather good results
- further improvements might be obtained by including explicit in-med. spectral functions (via 'coarse graining' or 'off-shell transport')
- or: better input? (form factors, rho-baryon coupling)

"COARSE GRAINING"

- PhD project of Stephan Endres
- put UrQMD simulation onto space-time grid
- for each cell, determine baryon and energy density
- use equation of state to calculate local temperature and baryo-chemical potential
- calculate thermal dilepton rates using Rapp-Wambach spectral function (Rapp 1997, NPA 617)

TIME EVOLUTION & DENSITY PROFILES (AT SPS)

- highest densities and temperatures reached at 1.2 fm $(100\epsilon_0, 20\rho_0, T = 300 \text{ MeV})$
- transverse shapes very similar at all times (scaled!)

Equation Of State & Temp. evolution

- below $T = 170 \,\mathrm{MeV}$: hadron-gas EOS (Zschiesche et al)
- above $T = 170 \,\mathrm{MeV}$: lattice EOS (He/Fries/Rapp)
- smooth transition in temperature between lattice and HG EOS at $t \approx 5 \, {\rm fm}$

• thermal equilibrium rates via em. current correlator:

$$\frac{d^8 N_{II}}{d^4 \times d^4 p} = -\frac{\alpha^2}{\pi^3} \frac{L(M^2)}{M^2} f_B(q_0; T) Im \Pi_{em}(M, q; T, \mu)$$

• hadronic phase: in-medium ρ propagator (Rapp et al.):

$$D_
ho = rac{1}{M^2 - m_0^2 - \Sigma_{
ho\pi\pi} - \Sigma_{
hoM} - \Sigma_{
hoB}}$$

 QGP emission via qq
 q
 annihilation from lattice QCD according to Ding, Francis et al., PRD83 (2011)

NA60 $\mu^+\mu^-$ spectrum

- good agreement with NA60 data, essentially reproducing earlier results by Rapp/Hees
- benchmark/proof of principle
- plus: improved fireball description

HADES: AR+KCL AT 1.76 GEV

- very good agreement
- dominant ρ in-medium contribution
- baryonic effects are crucial

STAR: AUAU AT 200 AGEV (PRELIMINARY)

- IMR: underestimation due to missing $c\bar{c}$
- LMR: good agreement with data

- pure transport simulations get very close to describing HADES data, when given proper input (ρ-R couplings!)
- coarse-grained transport (with Rapp spectral function) shows promising results from SIS over SPS to RHIC energies
- open questions:
 - understand differences at SIS in detail
 - is Rapp SF in agreement with HADES pp data?
- future work:
 - RHIC beam-energy scan
 - HADES Au+Au & pion beam
 - CBM at FAIR
 - extension to higher energies: use hybrid model for evolution

The End

Thanks for your attention!

JANUS WEIL DILEPTON PRODUCTION IN TRANSPORT-BASED APPROACHES