Neutrino induced pion production and nucleon knockout within the GiBUU transport model

<u>Tina Leitner</u> Luis Alvarez-Ruso and Ulrich Mosel

Institut für Theoretische Physik Universität Gießen, Germany

DPG Frühjahrstagung 2007, Gießen

Deutsche Forschungsgemeinschaft

Motivation

- interest in neutrino cross sections driven by the discovery of oscillations
 - experimental evidence: SNO, Super-Kamiokande, KamLAND and more
 - □ oscillation probability (2-flavor): $P(\nu_{\mu} \rightarrow \nu_{e}; t) = \sin^{2} 2\theta \sin^{2} \left(\frac{\Delta m^{2}L}{4F_{\mu}}\right)$
 - oscillation parameters & possible CP phase not known very precisely

problems:

neutrino energy E_{v} : flux reconstruction by measuring final state

detector response: often heavy nuclei distance *L* between production and detection point: easy at LBL experiments

identification of neutrino flavor: $\pi^0\, \text{can}$ fake $\nu_{\rm e}$ appearance signal

main source of uncertainties

neutrino cross sections
 nuclear effects
 requires coverage
 by theory and experiment

How do neutrinos interact with nucleons?

Tina Leitner, Universität Gießen

Quasielastic scattering

reactions:

CC:
$$\nu_l n \rightarrow l^- p$$

NC: $\nu n \rightarrow \nu n, \ \nu p \rightarrow \nu p$

hadronic current: $J_{\alpha}^{QE} = \langle N' | J_{\alpha}^{QE}(0) | N \rangle = \bar{u}(p') A_{\alpha} u(p)$

strange vector and axial form factors for NC

Δ resonance production

reactions: CC:
$$\nu_l n \to l^- \Delta^+$$
, $\nu_l p \to l^- \Delta^{++}$
NC: $\nu n \to \nu \Delta^0$, $\nu p \to \nu \Delta^+$

hadronic current: $J^{\Delta}_{\alpha} = \langle \Delta | J^{\Delta}_{\alpha}(0) | N \rangle = \bar{\psi}^{\beta}(p') B_{\beta\alpha} u(p)$ with $\bar{\psi}^{\beta}(p')$ Rarita-Schwinger spinor

 $B_{\beta\alpha} = \left(C_3^V V_3 + C_4^V V_4 + C_5^V V_5 + C_6^V V_6\right)\gamma_5 + C_3^A A_3 + C_4^A A_4 + C_5^A A_5 + C_6^A A_6$

with V_{i} and A_{i} being functions of p, p', q

vector form factors

related by CVC to electroproduction

•
$$C_5^V = C_6^V = 0, \ C_4^V = -\frac{M}{\sqrt{p'^2}} C_3^V$$

axial form factors

related by PCAC

•
$$C_6^A = C_5^A \frac{M^2}{Q^2 + m_\pi^2}, \ C_5^A(0) = \frac{g_{\Delta N\pi} f_\pi}{\sqrt{6}M} \approx 1.2$$

• $C_4^A = -\frac{1}{4}C_5^A, \ C_3^A = 0$

How do neutrinos interact with nuclei?

neutrino-nucleus reaction: $v_l A \rightarrow l \ hadrons$

□ scattering off a single nucleon

- nucleon bound in a nucleus
 - Fermi motion
 - Pauli blocking
 - nuclear binding
 - collisional broadening

final state interactions (FSI)

. .

- GiBUU transport model
 - exclusive cross sections:
 pion production & nucleon knockout

GiBUU transport model

what is GiBUU? semiclassical transport model in coupled channels

general information: <u>http://theorie.physik.uni-giessen.de/GiBUU/</u>

GiBUU describes ...

heavy ion reactions	(HK 13.4, HK 31.5)
pion induced reactions	(HK 29.6)
Iow & high energy photon & electron induced reactions	(HK 29.6, HK 37.2)
neutrino induced reactions	

... within the same unified framework using the same physics input!

GiBUU transport model – BUU equation

time evolution of phase space density (for $i = N, \Delta, \pi, \rho, ...$) given by BUU eq.:

$$\frac{df_i}{dt} = \left(\partial_t + (\nabla_{\vec{p}}H)\nabla_{\vec{r}} - (\nabla_{\vec{r}}H)\nabla_{\vec{p}}\right)f_i(\vec{r},\vec{p},t) = I_{coll}\left[f_i, f_N, f_\pi, f_\Delta, \ldots\right]$$

Hamiltonian $H = \sqrt{(m_i + U_s)^2 + \vec{p}^2}$

one-particle phase space density

mean field: Skyrme type with momentum and density dependence furthermore: pion potential, Coulomb potential

 one BUU equation for each particle species (GiBUU contains 61 baryons and 21 mesons)

coupled through the potential U_{s} and the collision integral I_{coll}

10

GiBUU transport model – collision integral

collision term I_{coll} accounts for changes in phase-space density f_i :

□ "1-body":

- (strong) decay of unstable particles
- □ 2-body:
 - elastic and inelastic scattering
 - $NN \leftrightarrow NN$ $NR \leftrightarrow NR'$ $NN \leftrightarrow NR$ $mB \leftrightarrow R$, in particular $\pi N \leftrightarrow \Delta$ $NN \leftrightarrow \Delta\Delta$ $\pi N \leftrightarrow \pi N$

□ 3-body:

- $\pi NN \rightarrow NN$
- $NN\Delta \rightarrow NNN$

Tina Leitner, Universität Gießen

effects of FSI on pion kinetic energy spectrum at E_{ν} = 1 GeV

- \Box strong absorption in Δ region
- \Box side-feeding from dominant π^+ into π^0 channel
- secondary pions through FSI of initial QE protons

Tina Leitner, Universität Gießen

effects of FSI on pion kinetic energy spectrum at E_{v} = 1 GeV

- \Box strong absorption in Δ region
- \Box side-feeding from dominant π^+ into π^0 channel
- secondary pions through FSI of initial QE protons

effects of FSI on pion kinetic energy spectrum at E_{v} = 1 GeV

- \Box strong absorption in Δ region
- \Box side-feeding from dominant π^+ into π^0 channel
- secondary pions through FSI of initial QE protons

similar effects of FSI for NC

 \Box but: side-feeding from dominant π^0 into π^{\pm} channel

Tina Leitner, Universität Gießen

similar effects of FSI for NC

 \Box but: side-feeding from dominant π^0 into π^{\pm} channel

comparison to random-walk model of Paschos et al. (Nucl. Phys. B 588 (2000) and priv. communication)

Tina Leitner, Universität Gießen

CC nucleon knockout: $v_{\mu}^{56}Fe \rightarrow \mu^{-}NX$

effects of FSI on nucleon kinetic energy spectrum at E_{ν} = 1 GeV

- □ production of neutrons (in particular in the QE channel)
- □ flux reduction at higher energies for protons
- □ large number of rescattered nucleons at low kinetic energies
- □ FSI do not cancel in the p-n ratio (side-feeding!)

Tina Leitner, Universität Gießen

NC nucleon knockout: $v_{\mu}^{56}Fe \rightarrow v_{\mu} N X$

similar effects for NC, but:

- □ side-feeding only important if proton and neutron yields different
- □ NC: starts with comparable yields $p : n \sim 1 : 1$ (CC: $p : n \sim 10 : 1$)

Tina Leitner, Universität Gießen

NC nucleon knockout: $v_{\mu}^{56}Fe \rightarrow v_{\mu} N X$

similar effects for NC, but:

□ side-feeding only important if proton and neutron yields different

 \square NC: starts with comparable yields p : n ~ 1 : 1 (CC: p : n ~ 10 : 1)

Do FSI effects cancel in the p-n ratio? (as claimed e.g. by Alberico, Maieron)

Tina Leitner, Universität Gießen

Summary & Conclusions

- neutrino nucleus scattering
 - \Box factorization: vN + in-medium modifications + FSI
- neutrino nucleon reactions
 - \Box at ~1 GeV: dominated by QE scattering & Δ production
 - □ parametrized in terms of form factors, CVC & PCAC
- neutrino scattering off bound nucleons
 - \Box Fermi motion, Pauli blocking, nuclear binding, modified width \rightarrow HK 40.2
- final state interactions
 - □ GiBUU model: reliable model for FSI
- nuclear effects in vA scattering
 - □ pion production
 - absorption, side-feeding, secondary pions
 - nucleon knockout
 - flux reduction & strong shift to low energies, side-feeding

Backup Slides

Tina Leitner, Universität Gießen

Medium modifications of the inclusive cross section

v N cross section is changed if the nucleon is bound in the nucleus!

Fermi motion:

□ local density approximation $p_F(\vec{r}) = \left[\frac{3}{2}\pi^2 \rho(\vec{r})\right]^{1/3}$

density distribution: Woods-Saxon $\rho(r) = \rho_0 \left(1 + \exp \frac{r - r_0}{\alpha}\right)^{-1}$

Pauli blocking:

$$\square P_{Pauli} = 1 - \Theta \left(p_F(\vec{r}) - |\vec{p}| \right)$$

- nuclear binding:
 - \Box potential $U_s(\vec{r}, \vec{p})$

• affect both QE and Δ

Medium modifications of the inclusive cross section

 Δ cross section is further modified in the nuclear medium:

 \Box decay might be Pauli blocked: decrease of the free width $\ \Gamma \to \widetilde{\Gamma}$

 \square additional "decay" channels in the medium: collisional width Γ_{coll}

Tina Leitner, Universität Gießen

CC pion production on free nucleons

Tina Leitner, Universität Gießen

NC pion production on free nucleons

NC production of Δ^+ and Δ^0

→ subsequent decay into 4 channels: $\nu p \rightarrow \nu n \pi^+$)

 νp

 νn

$$\begin{array}{c}
\nu p \rightarrow \nu p \pi^{-} \\
\nu n \rightarrow \nu p \pi^{-} \\
\nu p \rightarrow \nu p \pi^{0} \\
\nu n \rightarrow \nu n \pi^{0}
\end{array}$$
isoscalar target:
$$\begin{array}{c}
\pi^{+} : \pi^{-} : \pi^{0} = 1 : 1 : 4 \\
p : n = 1 : 1
\end{array}$$

Tina Leitner, Universität Gießen

NC pion production on free nucleons

NC production of Δ^+ and Δ^0

ightarrow subsequent decay into 4 channels: $u p
ightarrow
u n \pi^+$

$$\nu n \to \nu p \pi$$
$$\nu p \to \nu p \pi^{0}$$
$$\nu n \to \nu n \pi^{0}$$

including higher resonances (isospin $\frac{1}{2}$): $P_{11}(1440), D_{13}(1520), S_{11}(1535)$

Rein and Sehgal matrix elements (Ann. Phys. 133, 79 (1981))

Tina Leitner, Universität Gießen

Neutrino scattering off bound nucleons

Tina Leitner, Universität Gießen

Tina Leitner, Universität Gießen

CC nucleon knockout: $\nu_{\mu}{}^{56}Fe \rightarrow \mu^{-} N X$

Tina Leitner, Universität Gießen

⁵⁶Fe:
$$\pi^+$$
 : π^0 = 4.4 : 1 (without FSI \rightarrow FSI change this ratio)

w FSI (Δ): pions through initially produced Δ w FSI (QE): pions through initially produced QE

CC nucleon knockout: $v_{\mu}^{56}Fe \rightarrow \mu^{-}NX$

w FSI (Δ): nucleons through initially produced Δ w FSI (QE): nucleons through initially produced QE

Tina Leitner, Universität Gießen

Elementary neutrino nucleon reaction

cross section for vN reaction u(k) + N(p)
ightarrow l(k') + X(p'):

$$d\sigma = \frac{(2\pi)^4}{4} \frac{\delta^4(k'+p'-k-p)}{\left[(k\cdot p)^2 - m_i^2 M_{eff}^2\right]^{1/2}} \frac{d^4k'}{(2\pi)^3} \delta(k'^2 - m_l^2) \frac{d^4p'}{(2\pi)^3} \delta(p'^2 - M_{eff}'^2) |\bar{\mathcal{M}}|^2$$

Tina Leitner, Universität Gießen

Quasielastic scattering

Tina Leitner, Universität Gießen

Δ resonance production – details

reactions: CC:
$$\nu_l n \rightarrow l^- \Delta^+$$
, $\nu_l p \rightarrow l^- \Delta^{++}$
NC: $\nu n \rightarrow \nu \Delta^0$, $\nu p \rightarrow \nu \Delta^+$

hadronic current: $J^{\Delta}_{\alpha} = \langle \Delta | J^{\Delta}_{\alpha}(0) | N \rangle = \bar{\psi}^{\beta}(p') B_{\beta \alpha} u(p)$ with

 $ar{\psi}^eta(p')$ Rarita-Schwinger spinor

$$B_{\beta\alpha} = \left(\frac{C_3^V}{M}(g_{\alpha\beta}\not\!\!\!/ - q_{\beta}\gamma_{\alpha}) + \frac{C_4^V}{M^2}(g_{\alpha\beta}q \cdot p' - q_{\beta}p'_{\alpha}) + \frac{C_5^V}{M^2}(g_{\alpha\beta}q \cdot p - q_{\beta}p_{\alpha}) + g_{\alpha\beta}C_6^V\right)\gamma_5$$
$$+ \frac{C_3^A}{M}(g_{\alpha\beta}\not\!\!\!/ - q_{\beta}\gamma_{\alpha}) + \frac{C_4^A}{M^2}(g_{\alpha\beta}q \cdot p' - q_{\beta}p'_{\alpha}) + C_5^Ag_{\alpha\beta} + \frac{C_6^A}{M^2}q_{\beta}q_{\alpha}$$

axial form factors

related by PCAC

$$C_6^A = C_5^A \frac{M^2}{Q^2 + m_\pi^2}, \ C_5^A(0) = \frac{g_{\Delta N\pi} f_\pi}{\sqrt{6}M} \approx 1.2$$

vector form factors

• related by CVC to electroproduction

$$C_5^V = C_6^V = 0, \ C_4^V = -\frac{M}{\sqrt{p'^2}}C_3^V$$

Adler model:
$$C_4^A = -\frac{1}{4}C_5^A, C_3^A = 0$$

parametrizations: e N scattering: $C_3^V = v N$ scattering: C_5^A

Tina Leitner, Universität Gießen

GiBUU transport model – potentials

- mean-field potential U for nucleons and isospin 1/2 resonances
 - □ Skyrme type + momentum dependence
 - parametrization by Welke et al., Phys. Rev. C38, 2101 (1998)
 - fitted to saturation density of nuclear matter
 - momentum dependence from proton-nucleus scattering data

- mean-field potential for isospin 3/2 resonances
 2/3 of the nucleon potential
- furthermore: Coulomb potential, pion potential