gibuu is hosted by Hepforge, IPPP Durham
GiBUU

jobcards/T2K_0pi_water: T2K_O16_allchann.job

File T2K_O16_allchann.job, 18.2 KB (added by gallmei, 6 years ago)

Jobcard for T2K (all channels)

Line 
1************************************************************************************************************************************
2!* MasterJobCard for eventType=5 (neutrino induced)
3!-----------------------------------------------------------------------
4! please visit the GiBUU homepage for further information:
5! http://gibuu.hepforge.org
6!-----------------------------------------------------------------------
7! DON'T  FORGET to change  "path_to_input" in the namelist @input according to your local GiBUU installation
8!-----------------------------------------------------------------------
9! This jobcard is set up for T2K flux, to use another flux change "nuExp" in the namelist &neutrino_induced
10!-----------------------------------------------------------------------
11! In this jobcard the most of analysis is switched OFF, see namelist &neutrinoAnalysis;
12! the output of final events and particles in each event is given to the file FinalEvents.dat
13! to turn it OFF switch outputEvents=.false. in the namelist &neutrinoAnalysis
14!
15! To produce the output in the LesHouches format to files
16!  * LesHouches.Pert.00000001.xml
17!  * LesHouches.Pert.00000002.xml (and so on, separate file for each subsequent run)
18!  switch LesHouchesFinalParticles_Pert=.true.  in the namelist  &LesHouches
19!
20!***************************************************************************************************************************************
21! Some hints on output:
22!
23! for kinetic energy distribution of pions see diff_000_dSigma_dEkin_pi_charge..... .dat  (1 pion in the final state )
24! for kinetic energy distribution of nucleons see diff_000_dSigma_dEkin_N_charge..... .dat  (1 pion in the final state )
25! for kinetic energy distribution of kaons see diff_000_dSigma_dEkin_K_charge..... .dat  (1 pion in the final state ) 
26!       these files will only be in output if in the namelist &detailed_diff  you set forkaon=.true.
27!       the same applies for eta, antikaons, Lambda and Sigma hyperons
28! to change the maximal kinetic energy (in the output file only) and binning, change ekinMax and dEkin  in the same namelist
29!
30! for Q2, outgoing-lepton-kinetic-energy and outgoing-lepton-angle-with-respect-to-neutrino-direction  distributions
31!       for "0 pion in the final state" (QE-like) events see  files diff_000_dSigma_ ..... lepton_no_pi.dat
32!       These will only appear on the output only if specificEventAnalysis=.true. and  in the namelist &nl_specificEvent you set no_pi=.true.
33!       In the same namelist other type of final states can also be choosen, output will be produced for all of them
34!
35! For energy reconstruction and oscillation analysis for the specific final states, as set in the &nl_specificEvent,
36!       set "reconstruct_neutrino_energy=.true. ; for output see files reconstruction....dat   and oscillation....dat
37!
38
39
40!################################################
41!init flags
42!################################################
43!****************
44! neutrino init:
45!****************
46! file code/init/neutrino/initNeutrino.f90
47
48&neutrino_induced
49       process_ID      =  2 ! 2:CC, 3:NC, -2:antiCC, -3:antiNC
50       flavor_ID       =  2 ! 1:electron, 2:muon, 3:tau
51!         
52
53!       nuXsectionMode  =  0 !  0: integratedSigma
54!       nuXsectionMode  =  1 !  1: dSigmadCosThetadElepton
55!       nuXsectionMode  =  2 !  2: dSigmadQsdElepton
56!       nuXsectionMode  =  3 !  3: dSigmadQs
57!       nuXsectionMode  =  4 !  4: dSigmadCosTheta
58!       nuXsectionMode  =  5 !  5: dSigmadElepton
59!       nuXsectionMode  =  6 !  6: dSigmaMC
60!       nuXsectionMode  =  7 !  7: dSigmadW
61!       nuXsectionMode  = 10 ! 10: EXP_dSigmadEnu
62!       nuXsectionMode  = 11 ! 11: EXP_dSigmadCosThetadElepton
63!       nuXsectionMode  = 12 ! 12: EXP_dSigmadQsdElepton
64!       nuXsectionMode  = 13 ! 13: EXP_dSigmadQs
65!       nuXsectionMode  = 14 ! 14: EXP_dSigmadCosTheta
66!       nuXsectionMode  = 15 ! 15: EXP_dSigmadElepton
67!       nuXsectionMode  = 16 ! 16: EXP_dSigmaMC
68!       nuXsectionMode  = 17 ! 17: EXP_dSigmadW
69 
70!   for calculations with given, fixed neutrino energy
71!       nuXsectionMode  =  6 !  6: dSigmaMC
72!   calculation for flux-veraged cross sections (choose with flag nuExp): above  plus 10
73        nuXsectionMode  = 16 ! 16: EXP_dSigmaMC
74!
75!   The values for nuExp are ! only relevant if nuXsectionmode.ge.10
76!         
77!       nuExp           =  0 !  0: noExp
78!       nuExp           =  1 !  1: MiniBooNE-nu
79!       nuExp           =  2 !  2: ANL
80!       nuExp           =  3 !  3: K2K
81!       nuExp           =  4 !  4: BNL
82!       nuExp           =  5 !  5: MinibooNE-barnu
83!       nuExp           =  6 !  6: MINOS-numu-numode
84!       nuExp           =  7 !  7: MINOS-barnumu-numode
85!       nuExp           =  8 !  8: NOvA
86       nuExp           =  9 !  9: T2K-OA2.5-ND280
87!       nuExp           = 10 ! 10: uniform-distribution
88!       nuExp           = 11 ! 11: MINOS-numu-barnumode
89!       nuExp           = 12 ! 12: MINOS-barnumu-barnumode
90!       nuExp           = 13 ! 13: MINERvA-nu   (rebinned flux from 0.0 GeV to 20 GeV)
91!       nuExp           = 14 ! 14: MINERvA-barnu  (flux from 1.5 GeV to 20 GeV)
92!       nuExp           = 15 ! 15: LBNE nu
93!       nuExp           = 16 ! 16: LBNE barnu
94!
95!   subprocesses to take into account     
96       includeQE       = T
97       includeDELTA    = T
98       includeRES      = T
99       include1pi      = T
100       includeDIS      = T
101       include2p2hQE   = T
102       include2p2hDelta= F
103       include2pi      = F 
104       
105       printAbsorptionXS = T
106/
107
108!   Flux cuts
109&nl_fluxcuts
110       Enu_lower_cut    = 0.0
111       Enu_upper_cut    = 40.0
112       energylimit_for_Qsrec = T   ! switch for using fluxcuts also in Q^2 reconstr.   
113/       
114!   
115
116
117
118! file code/density/nucleus.f90
119&target     
120        target_Z=8
121        target_A=16
122        densitySwitch_Static=2          ! 0: density=0.0, 1: Wood-Saxon by Lenske, 2 : NPA 554, 3: Wood-Saxon by Lenske, different neutron and proton radii,
123                                        ! 5: density distribution is a sphere with density according to the input value of "fermiMomentum_input".
124        fermiMomentum_input=0.225       ! Input value of the fermi momentum for densitySwitch_static=5.
125        fermiMotion=.true.
126        ReAdjustForConstBinding=.true.
127!   ConstBinding=-0.008             ! only valid for ReAdjustForConstBinding=true
128/
129
130! file code/density/density.f90
131&initDensity
132    densitySwitch=2                 ! 1=dynamic density according to testparticle density, 2=analytic density prescription
133/
134
135! file code/density/pauliBlocking.f90
136&initPauli
137    pauliSwitch=2                   ! 1=dynamic, 2=analytic
138/
139
140
141!#############################################################
142! general input, controls among others, the statistics of output
143!#############################################################
144
145
146! file code/inputOutput/input.f90
147! the number of generated events is proportional (but not equal, because some "events" can be in prohibited phase space)
148! to target_A * numEnsembles * num_runs_SameEnergy
149&input
150        numEnsembles=4000               ! for C12 you can use 4000, for heavier nuclei should be lower; decrease it if there are problems with memory,
151        eventtype=5                     ! 5=neutrino, 200=simple transport of a given particle
152        numTimeSteps=130                ! the distance numTimeSteps*delta_T (100*0.2=20 fm in this example) should significantly exceed the radius of the target nucleus
153        delta_T=0.2
154        fullensemble=.true.
155        localEnsemble=.true.
156        num_runs_SameEnergy=400        ! increase these if you want to increase statistics (= number of generated events)
157        num_Energies=1                  ! for nuXsectionMode=6 or 16 keep this 1, for other nuXsectionMode this is the number of the running Q2/Elepton/cosTheta variables, respectively
158        printParticleVectors=.true.
159        freezeRealParticles=.true.
160        LRF_equals_CALC_frame=.true.          !if .false.: no offshelltransport possible
161        path_to_input='/home/mosel/GiBUU/buuinput'  ! for local run cluster
162/
163
164
165!********************************************
166! Model ingredients
167!******************************************
168! file code/init/lowElectron/lepton2p2h.f90
169
170&lepton2p2h
171      ME_Version=4            ! This is the Christy model
172/     
173
174!****************
175! form factors for resonance production
176!****************
177! file code/init/lepton/formfactors_ResProd/formFactor_ResProd.f90
178&input_FF_ResProd
179  FF_ResProd=0                    ! 0=MAID in CM-frame, 1=fit of Lalakulich ,2=MAID in LAB-frame
180  MA=0.95                         ! axial mass in the Delta resonance form factors based on ANL=0.95  or BNL=1.3
181/
182
183!*****************
184!background parameters for fit to ANL or BNL pion data
185!*****************
186! file  code/init/neutrino/singlePionProductionMAIDlike.f90
187&neutrino_MAIDlikeBG
188  b_proton_pinull=3.0            ! parameters for 1-pion background  ANL=3       BNL=6(default)
189  b_neutron_piplus=1.5          !                                   ANL=1.5     BNL=3.0(default)
190/
191
192
193! file code/init/neutrino/neutrinoXsection.f90
194&nl_neutrinoxsection
195        singlePiModel=1                 ! 0 for HNV, 1 for MAID
196!       invariantMasscut=100.           ! cut events with invariant mass above
197  REScutW1=2.0                    ! these 4 parameters describe the transition
198                                  ! region in invariant mass W between the
199                                  ! resonances and DIS, see
200                                  ! "Lalakulich Gallmeister Mosel
201                                  !  PRC86(2012)014607" for details
202        REScutW2=2.05
203        DIScutW1=1.6
204        DIScutW2=1.65   
205 
206!  REScutW1=2.0                    ! these 4 parameters describe the transition
207                                  ! region in invariant mass W between the
208                                  ! resonances and DIS, see
209                                  ! "Lalakulich Gallmeister Mosel
210                                  !  PRC86(2012)014607" for details
211!       REScutW2=1.9
212!       DIScutW1=1.5
213!       DIScutdW=0.2   
214 
215!  mcutDIS=0.6
216! DISmassless = .true.
217
218  invariantMasscut=20.           ! mass cuts on Wrec
219  invariantMassCut_BG = 20.      ! mass cuts on Wrec
220/
221
222
223! SPECFIC NEUTRINO FLAGS depending on nuXsectionMode
224! file for all of them   code/init/neutrino/neutrinoXsection.f90
225! relevant for nuXsectionMode=6 and (except parameter enu) 16
226&nl_SigmaMC
227    MC_xmax=2.0         ! to get QE peak in nuclei, where Bjorken_x larger than 1
228    enu=1.0
229/
230
231
232!################################################
233!analysis flags
234!################################################
235
236
237!****************
238! Neutrino analysis
239!****************
240
241! file code/init/neutrino/expNeutrinofluxes.f90
242&MiniBooNE_energyFlux           !
243    Eb=0.030                       ! which binding energy to use in the muon-kinematics-based formular for neutrino energy reconstruction for "0-pion" events
244/
245
246! file  code/analysis/neutrinoAnalysis.f90
247&neutrinoAnalysis
248        radialScale=0                   
249        detailed_diff_output=.true.     ! differential xsec; see namelist detailed_diff for max values and bins of the histograms
250        KineticEnergyDetectionThreshold_lepton=0.0          ! outgoing lepton acceptance cut, lower lepton kinetic energy
251!  AngleUpperDetectionThresholdDegrees_lepton =     ! outgoing lepton acceptance cut, upper lepton angle
252  kineticEnergyDetectionThreshold_nucleon=0.
253        kineticEnergyDetectionThreshold_chargedpion=0.0
254!  AngleUpperDetectionThresholdDegrees_chargedpion = 72.54
255        kineticEnergyDetectionThreshold_neutralpion=0.
256        calorimetric_analysis=.false.        ! calorimetric reconstruction of energy; see namelist nl_calorimetric_analysis
257        ZeroPion_analysis=.true.            ! extra cross sections  for events with 0 pions in the final state
258        reconstruct_neutrino_energy=.true.  ! calculate neutrino energy reconstruction for varios final states (see nl_specificEvent)
259        specificEvent_analysis=.true.       ! extra cross sections for specific final states; see namelist nl_specificEvent
260                                                                                                  ! also provides Q2 and energy reconstruction
261        inclusiveAnalysis=.false.            !if .true. we don't care whether particles have made it out       
262        outputEvents=.false.                   ! output list of events and all outgoing particles in each event to the file FinalEvents.dat
263  include_W_dist=.true.               !printout of W-distributions for outgoing channel
264/
265
266
267&W_distributions
268  dW_Npi=0.02
269  Wmax_Npi=2.0
270
271
272
273! file code/analysis/LesHouchesAnalysis.f90
274&LesHouches
275   LesHouchesFinalParticles_Pert=.false. ! output list of events and all outgoing particles in each event to the file in LesHouches format
276/
277
278
279
280! file code/analysis/neutrinoAnalysis.f90
281&nl_calorimetric_analysis
282        numax=30
283        nubin=0.02
284        Enumax=30
285        enubin=0.05
286/
287
288! file code/analysis/neutrinoAnalysis.f90
289$nl_specificEvent          ! any .true. in this namelist must be combines with specificEvent_analysis=.true. in &neutrinoAnalysis
290        no_pi=.true.           ! specificEvent=1        set to .true. if you want produce e.g. one-diff xsec versus lepton varaibles (Ekin, Q2, costheta)
291                                           !                                      for "no pions in the final state" events
292        p_Xn_no_pi=.true.      ! specificEvent=2
293        piplus=.true.          ! specificEvent=3
294        pi0=.true.             ! specificEvent=4
295        pi0_MULTI=.true.       ! specificEvent=5
296        piplus_MULTI=.true.    ! specificEvent=6
297        pp_no_pi=.true.       ! specificEvent=7
298        pn_no_pi=.true.       ! specificEvent=8
299        nn_no_pi=.true.       ! specificEvent=9
300        pp_Xn_no_pi=.false.    ! specificEvent=10
301        nn_Xp_no_pi=.false.    ! specificEvent=11
302        ppp_Xn_no_pi=.false.   ! specificEvent=12
303        pppp_Xn_no_pi=.false.  ! specificEvent=13
304        p_no_pi=.true. ! specificEvent=14
305        n_no_pi=.true. ! specificEvent=15
306        Xn_no_pi=.true. ! specificEvent=16
307!
308!  binning for reconstruction of Q2 and Enu
309!
310  binsizeQ2=0.01      ! 0.01
311  binsizeEnu=0.05     ! 0.02
312  maxQ2=3.0           ! 5.0 for LBNE   
313  maxEnu=3.0                              ! 5.0 for T
314/
315
316
317! file code/analysis/neutrinoAnalysis.f90
318&detailed_diff
319        ekinMax=3.0         ! maximum value of Ekin in the output of distribution of hadrons versus kinetic energy
320        dEkin=0.02          ! binning of Ekin in the output versus kinetic energy
321        EkinMax_lepton=3.
322  fornucleon=.true.   ! produce output versus kinetic energy, angle, ... for this outgoing hadron
323        forpion=.true.      ! to the files diff_....
324        foreta=.true.
325        forkaon=.true.
326        forkaonBar=.true.
327        forLambda=.true.
328        forSigmaResonance=.false.
329/
330
331
332
333!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
334! file code/init/neutrino/matrixelement.f90
335&neutrino_matrixelement
336    which_resonanceModel=0          !0=QE + matrixelements from MAID,
337                                    !1=QE matrixelements + old Delta,
338                                    !2=Rein-Sehgal
339/
340
341
342! file code/init/lepton/formfactors_QE_nucleon/FF_QE_nucleonScattering.f90
343&ff_QE
344        parametrization=3               ! 1=BBA03, 2=BBBA05, 3=BBBA07
345        useNonStandardMA=.false.        ! if true, use value of MA_in for axial mass MA, if false, use best fit
346!   MA_in=1.0
347/
348
349
350
351!################################################
352! in-medium width
353!################################################
354
355! file code/width/baryonWidthMedium.f90
356&width_Baryon
357    mediumSwitch=.false.               ! if .false. vacuum widths will be used for all resonances
358                                      ! and other switches are not meaningful/relevant
359    mediumSwitch_Delta=.false.         ! Use Oset broadening of the Delta (only relevant for mediumSwitch_coll=.false.)
360    mediumSwitch_coll=.false.         ! Use collisional broadening of all resonances
361/
362
363&barBar_BarBar                        ! suppresses Delta excitation NN -> Delta N
364                                      ! with density, foll. Song & Ko
365  deltaN_densityDependence = F
366/
367
368! file  code/spectralFunctions/spectralFunc.f90
369&spectralFunction
370   nuclwidth=0.001                 ! if mediumSwitch_coll=.false.: this parameter determines the "bare nucleon width", for numerical purpose
371   relativistic=.true.             ! if mediumSwitch_coll=.false.: relativistic or non-rel. spectral function
372/
373
374
375!################################################
376! propagation
377!################################################
378! file  code/propagation/propagation.f90   
379&propagation
380        delta_P=0.01                    ! Delta Momentum for derivatives
381        delta_E=0.01                    ! Delta Energy for derivatives
382
383        UseHadronic=.true.              ! Whether to use hadronic potentials in propagation
384  RungeKuttaOrder=2               ! 1=first order Runge-Kutta, 2=second order Runge-Kutta
385  Mode=2                          ! =0 Cascade, =1 Euler, =2 Predictor-Corrector
386/
387
388
389! file  code/width/offShellPotential.f90
390&offShellPotential
391        useOffShellPotentialBaryons=.false.     ! if inMediumSwitch=.false. also useOffShellpotential will be set to .false.
392        extrapolateBaryonWidth=.false.          ! whether to extrapolate the baryon width below minimal mass
393/
394
395
396!################################################
397! potentials
398!################################################
399! file code/potential/baryonPotential.f90
400&baryonPotential
401        EQS_Type=5                      ! 1=soft mom-dep, 2=hard mom-dep, 3=soft non-mom-dep, 4=hard non-mom-dep, 5=medium mom-dep
402        DeltaPot=1                      ! 1=2/3 of nucleon potential, 2=100 MeV*rho/rhoNull
403        symmetryPotFlag=0        ! Switch for the assymetry term in the nucleon potential
404/
405
406
407! file code/potential/coulomb/coulomb.f90
408&Coulomb
409    CoulombFlag=.false.
410/
411
412
413!################################################
414! collision term
415!################################################
416
417! file code/collisions/collisionTerm.f90
418&collisionTerm
419        oneBodyProcesses=.true.
420        twoBodyProcesses=.true.
421        threeBodyProcesses=.true.
422        DoJustAbsorptive=.false.
423/
424
425
426! file  code/collisions/twoBodyReactions/hadronFormation.f90
427!&hadronFormation
428!   useJetSetVec=.false.  ! use .false. to switch to old JETSET model for hadron formation
429!   tauForma=0.01         ! only valid for useJetSetVec=.false. ,   the value 0.01 is equivalent to 0, default is 0.8
430!/
431
432
433! file code/collisions/twoBodyReactions/master_2Body.f90
434&master_2Body
435        baryonBaryonScattering=.true.
436        baryonMesonScattering=.true.
437        mesonMesonScattering=.false.
438/
439
440
441!file code/collisions/twoBodyReactions/baryonMeson/resonanceCrossSections.f90
442&resonanceCrossSections
443        fullPropagator=.false.          ! Use self energies in resonance propagators (only when collisional broadening is switched on)
444/
445
446
447
448! file code/collisions/insertion.f90
449&insertion
450    minimumEnergy=0.005  ! default is 0.005 GeV
451/
452
453
454! file code/collisions/twoBodyReactions/HiEnergy/DoCollTools.f90
455&pythia
456   PARP(91)=0.44
457/