gibuu is hosted by Hepforge, IPPP Durham
GiBUU

TABLE OF CONTENTS


/energyCalc [ Modules ]

[ Top ] [ Modules ]

NAME

module energyCalc

PURPOSE

Incorporates routines to evaluate the one-particle energy of a given particle and a routine for making a so called energy correction to a given final state.


energyCalc/accuracy [ Global module-variables ]

[ Top ] [ energyCalc ] [ Global module-variables ]

PURPOSE

Determines accuracy of energy determination in the determination of the one particle energy. Units : GeV.

SOURCE

  real, parameter :: accuracy=0.0005

energyCalc/updateEnergies [ Subroutines ]

[ Top ] [ energyCalc ] [ Subroutines ]

NAME

subroutine updateEnergies(part,check_in)

PURPOSE

Routine updates energies of the particles

INPUTS

OUTPUT


energyCalc/energyDetermination [ Subroutines ]

[ Top ] [ energyCalc ] [ Subroutines ]

NAME

subroutine energyDetermination(part,betaToCF,countMax,error_out, check,warn,ForbidCoulomb,skipTestE0)

PURPOSE

This subroutine determines the one-particle energy E with a momentum-dependent scalar potential that is defined in the local rest frame.

NOTES

  • We keep p(1:3) and m constant.
  • To solve: p**2=E**2-p(1:3)**2=(m+s(E))**2
  • The scalar potential s is only defined in the LRF.
  • First we try to find the solution f(E)=0 via a the newton method, f(E)=m_eff**2-p**2=m_eff**2+p(1:3)**2-E**2 with m_eff=m+s(E) by the iteration E(i+2)=E(i+1)-f(i+1)*(E(i+1)-E(i))/(f(i+1)-f(i)).
  • If the newton method fails, we try it again via a bisection method
  • At the end, the Coulomb potential is added.

INPUTS

  • type(particle) :: part -- Particle to be considered.
  • real,dimension (1:3), OPTIONAL :: betaToCF -- Velocity of "Calculation Frame" in the frame where the particle's momentum is defined.
  • integer, OPTIONAL :: countMax -- maximal number of cycles to find a solution (default=10000)
  • logical, OPTIONAL :: check -- check for energy conservation (Default: .false.)
  • logical, OPTIONAL :: warn -- if true, a warning message is issued, if the incomming momentum is too large (otherwise, this is skipped silently). (Default: .true.)
  • logical, OPTIONAL :: ForbidCoulomb -- if true, the Coulomb potential is NOT added to p0 (needed by 'propagate', where the coulomb force is treated seperately) (Default: .false.)
  • logical, OPTIONAL :: skipTestE0 -- if true, the input value of E will not be tested to be a already a good solution
  • logical, OPTIONAL :: verbose -- if false, be totally quiet

OUTPUT

  • type(particle) :: part
  • real, OPTIONAL :: error_out -- approximate error of E = sqrt(f(e))
  • real, OPTIONAL :: flagOK -- .true., if success


energyDetermination/MesonHistFailures [ Subroutines ]

[ Top ] [ energyDetermination ] [ Subroutines ]

NAME

subroutine MesonHistFailures(iTyp)

PURPOSE

Do statistics of failures connected with mesons and off-shellness


energyDetermination/vary_mass_offshell [ Functions ]

[ Top ] [ energyDetermination ] [ Functions ]

NAME

logical function vary_mass_offshell()

PURPOSE

Try maximizing p_0 such that equation is still fulfilled


energyDetermination/newton [ Functions ]

[ Top ] [ energyDetermination ] [ Functions ]

NAME

logical function newton()

PURPOSE

solve f(E)=0 by Newton Method


energyDetermination/bisection [ Functions ]

[ Top ] [ energyDetermination ] [ Functions ]

NAME

logical function bisection(E1,E2)

PURPOSE

solve f(E)=0 by Bisection Method


energyDetermination/plot_f [ Subroutines ]

[ Top ] [ energyDetermination ] [ Subroutines ]

NAME

subroutine plot_f(part_in)

PURPOSE

This subroutine plots the function

   m_eff**2(part,ener)-(Energy**2-Sum(p**2)) as a

function of energy. Zoomes into the region where the function is zero. Useful for debugging!!


energyDetermination/errorMessage [ Subroutines ]

[ Top ] [ energyDetermination ] [ Subroutines ]

NAME

subroutine errorMessage

PURPOSE

Print some info about particle


energyDetermination/m_eff_sqr [ Functions ]

[ Top ] [ energyDetermination ] [ Functions ]

NAME

real function m_eff_sqr(partIN,density,enerOut)

PURPOSE

Evaluate m_eff**2=(m+S)**2 of a given particle by boosting to the LRF-Frame, where S is the scalar potential.


energyCalc/energyCorrection [ Subroutines ]

[ Top ] [ energyCalc ] [ Subroutines ]

NAME

subroutine energyCorrection(srqts, betaToCM, finalState, successFlag, potentialFailure, verbose)

PURPOSE

Gets the finalState particles with vacuum kinematics in the CM Frame. Also the real srts of the final state is handed over to the routine. Then this routine tries to solve energy and momentum conservation by the ansatz described in the cross section documentation. . Therefore it evaluates the scaling factor "x" which is used to scale the CM-momenta of the final states. This is done by a Regula-Falsi-Method. We search of a zero of the function "deltaSrts" which depends on this scaling factor x.

IMPORTANT : Output are the final state particles in the calculation frame!

INPUTS

  • real, intent(in) :: srtS
  • real, intent(in), dimension(1:3) :: betaToCM -- velocity of CM frame in calculation frame
  • type(particle), dimension(:), intent(INOUT) :: finalState -- in CM frame
  • logical, OPTIONAL :: verbose -- flag print messages on/off (default: on)

OUTPUT

  • type(particle), dimension(:), intent(INOUT) :: finalState -- in calc frame
  • logical, intent(out) :: successFlag
  • logical, optional :: potentialFailure -- .true. if it fails due to neglecting perturbative potentials

NOTES

If the iteration fails, successFlag is set to .false. as output.

Now is used also in the RMF mode (only function deltaSrts is modified).


energyCorrection/setFinalState [ Subroutines ]

[ Top ] [ energyCorrection ] [ Subroutines ]

NAME

subroutine setFinalState

PURPOSE

boost the particles and set them into 'finalState'


energyCorrection/deltaSrts [ Functions ]

[ Top ] [ energyCorrection ] [ Functions ]

NAME

real function deltaSrts(x)

PURPOSE

Evaluates sqrt(s)-Sum(Energies in CM frame). This value is the size of the energy non-conservation. The sum depends on the scaling factor for the three momenta