TABLE OF CONTENTS
- 1. /nucleus
- 1.1. nucleus/getTarget
- 1.2. nucleus/getProjectile
- 1.3. nucleus/initProjectile
- 1.3.1. initProjectile/Projectile_A
- 1.3.2. initProjectile/Projectile_Z
- 1.3.3. initProjectile/fermiMotion
- 1.3.4. initProjectile/densitySwitch_static
- 1.3.5. initProjectile/fermiMomentum_input
- 1.3.6. initProjectile/projectile
- 1.4. nucleus/DensTab_projectile.dat
- 1.5. nucleus/initTarget
- 1.5.1. initTarget/Target_A
- 1.5.2. initTarget/Target_Z
- 1.5.3. initTarget/fermiMotion
- 1.5.4. initTarget/densitySwitch_static
- 1.5.5. initTarget/fermiMomentum_input
- 1.5.6. initTarget/ReAdjustForConstBinding
- 1.5.7. initTarget/ConstBinding
- 1.5.8. initTarget/target
- 1.6. nucleus/DensTab_target.dat
- 1.7. nucleus/initNucleus
/nucleus [ Modules ]
NAME
module nucleus
PURPOSE
Provides access to the projectile and target nuclei.
INPUTS
Namelists "target" and "projectile".
nucleus/getTarget [ Functions ]
[ Top ] [ nucleus ] [ Functions ]
NAME
function getTarget()
PURPOSE
Returns an initialized target nucleus resting at 0. with velocity=0.
INPUTS
- NONE
OUTPUT
- type(nucleus) :: getTarget
nucleus/getProjectile [ Functions ]
[ Top ] [ nucleus ] [ Functions ]
NAME
function getProjectile()
PURPOSE
Returns an initialized projectile nucleus resting at 0. with velocity=0.
INPUTS
- NONE
OUTPUT
- type(nucleus) :: getProjectile
nucleus/initProjectile [ Subroutines ]
[ Top ] [ nucleus ] [ Subroutines ]
NAME
subroutine initProjectile
PURPOSE
Initializes the projectile nucleus resting in the origin according to Information in namelist "projectile" in jobcard.
initProjectile/Projectile_A [ Global module-variables ]
[ Top ] [ initProjectile ] [ Global module-variables ]
SOURCE
integer, save :: Projectile_A = 0
PURPOSE
Mass A of projectile nucleus ( = number of nucleons). If zero, a default isotope is chosen for the given projectile_Z.
initProjectile/Projectile_Z [ Global module-variables ]
[ Top ] [ initProjectile ] [ Global module-variables ]
SOURCE
integer, save :: Projectile_Z = 20
PURPOSE
Charge Z of projectile nucleus ( = number of protons).
initProjectile/fermiMotion [ Global module-variables ]
[ Top ] [ initProjectile ] [ Global module-variables ]
SOURCE
logical,save :: fermiMotion=.true.
PURPOSE
Determines whether particles in projectile nucleus feel Fermi motion or not.
initProjectile/densitySwitch_static [ Global module-variables ]
[ Top ] [ initProjectile ] [ Global module-variables ]
SOURCE
integer,save :: densitySwitch_static=3
PURPOSE
This switch is important, because it decides, which static density is used to set up the testparticles in the nuclei before the first time-step.
Possible values:
- 0 : density=0.0
- 1 : Static density uses Woods-Saxon according to H. Lenske
- 2 : Static density according to NPA 554
- 3 : Static density according to Horst Lenske, implements different radii for neutrons and protons
- 4 : Static density according oscillator shell model
- 5 : Density distribution is a sphere with density according to the input value of "fermiMomentum_input".
- 6 : Static Density based on LDA, implemented by Birger Steinmueller
- 7 : Static Density based on LDA + Welke potential
- 8 : Static Density prescription according Relativistic Thomas-Fermi (Valid only in RMF-mode)
Possible nuclei for the different prescriptions:
- 1 : A > 2 (only A > 16 makes sense)
- 2 :
- 3 : 6->C(12), 8->O(16),O(18), 13->Al(27), 20->Ca(40),Ca(44), 79->Au(197) 82->Pb(208)
- 4: 2->He(4), 4->Be(9), 5->B(11), 6->C(12), 8->O(16)
initProjectile/fermiMomentum_input [ Global module-variables ]
[ Top ] [ initProjectile ] [ Global module-variables ]
SOURCE
real,save :: fermiMomentum_input=0.225
PURPOSE
Input value of the fermi momentum for densitySwitch_static=5 (in GeV).
initProjectile/projectile [ Namelists ]
[ Top ] [ initProjectile ] [ Namelists ]
NAME
NAMELIST /projectile/
PURPOSE
Includes the input parameters for the projectile nucleus:
nucleus/DensTab_projectile.dat [ Output files ]
[ Top ] [ nucleus ] [ Output files ]
NAME
file DensTab_projectile.dat
PURPOSE
Density tabulation of the projectile nucleus at initialization.
nucleus/initTarget [ Subroutines ]
[ Top ] [ nucleus ] [ Subroutines ]
NAME
subroutine initTarget
PURPOSE
Initializes the target nucleus resting in the origin according to Information in namelist "target" in jobcard.
initTarget/Target_A [ Global module-variables ]
[ Top ] [ initTarget ] [ Global module-variables ]
SOURCE
integer, save :: Target_A = 0
PURPOSE
Mass A of target nucleus ( = number of nucleons). If zero, a default isotope is chosen for the given target_Z.
initTarget/Target_Z [ Global module-variables ]
[ Top ] [ initTarget ] [ Global module-variables ]
SOURCE
integer, save :: Target_Z = 20
PURPOSE
Charge Z of target nucleus ( = number of protons).
initTarget/fermiMotion [ Global module-variables ]
[ Top ] [ initTarget ] [ Global module-variables ]
SOURCE
logical,save :: fermiMotion=.true.
PURPOSE
Determines whether particles in target nucleus feel Fermi motion or not.
initTarget/densitySwitch_static [ Global module-variables ]
[ Top ] [ initTarget ] [ Global module-variables ]
SOURCE
integer,save :: densitySwitch_static=3
PURPOSE
This switch is important, because it decides, which static density is used to set up the testparticles in the nuclei before the first time-step.
Possible values:
- 0 : density=0.0
- 1 : Static density uses Woods-Saxon according to H. Lenske
- 2 : Static density according to NPA 554
- 3 : Static density according to Horst Lenske, implements different radii for neutrons and protons
- 4 : Static density according oscillator shell model
- 5 : Density distribution is a sphere with density according to the input value of "fermiMomentum_input".
- 6 : Static Density based on LDA, implemented by Birger Steinmueller
- 7 : Static Density based on LDA + Welke potential
- 8 : Static Density prescription according Relativistic Thomas-Fermi (Valid only in RMF-mode)
Possible nuclei for the different prescriptions:
- 1 : A > 2 (only A > 16 makes sense)
- 2 : Be (9), C(12), O(16,18), Al(27), Ca(40), Ca(44), Fe(56), Cu(63), As(75), Ce(142), Sn(112, 116,120,124), Ta(181), Au(197), Pb(208) see densityStatic.f90 subroutine denspar for more info
- 3 : 6->C(12), 8->O(16),O(18), 13->Al(27), 20->Ca(40),Ca(44), 79->Au(197) 82->Pb(208)
- 4: 2->He(4), 4->Be(9), 5->B(11), 6->C(12), 8->O(16)
initTarget/fermiMomentum_input [ Global module-variables ]
[ Top ] [ initTarget ] [ Global module-variables ]
SOURCE
real,save :: fermiMomentum_input=0.225
PURPOSE
Input value of the fermi momentum for densitySwitch_static=5 (in GeV).
initTarget/ReAdjustForConstBinding [ Global module-variables ]
[ Top ] [ initTarget ] [ Global module-variables ]
SOURCE
logical, save :: ReAdjustForConstBinding = .false.
PURPOSE
If this flag is set to true, we use the selected density distribution only for a preliminary step, where we calculate the baryonic potential as function of r (which depends on the density distribution). From the condition, that the binding energy has to be constant, we deduce the distribution of the fermi momentum and thus the 'new' density distribution.
The tabulated density distribution is replaced via the 'new' one and all behaviour is as usual.
initTarget/ConstBinding [ Global module-variables ]
[ Top ] [ initTarget ] [ Global module-variables ]
SOURCE
real, save :: ConstBinding = -0.008
PURPOSE
if 'ReAdjustForConstBinding' equals true, we a trying to readjust the fermi momentum and the density such, we quarantee this value for the binding energy.
initTarget/target [ Namelists ]
[ Top ] [ initTarget ] [ Namelists ]
NAME
NAMELIST /target/
PURPOSE
Includes the input parameters for the target nucleus:
- Target_A --- mass of nucleus
- Target_Z --- charge of nucleus
- fermiMotion --- Fermi motion yes/no
- densitySwitch_static
- fermiMomentum_input
- ReAdjustForConstBinding
- ConstBinding
nucleus/DensTab_target.dat [ Output files ]
[ Top ] [ nucleus ] [ Output files ]
NAME
file DensTab_target.dat
PURPOSE
Density tabulation of the target nucleus at initialization.
nucleus/initNucleus [ Subroutines ]
[ Top ] [ nucleus ] [ Subroutines ]
NAME
subroutine initNucleus(Nuc)
PURPOSE
Initializes a nucleus resting in the frame of calculation at r=0.
INPUTS
- type(tNucleus), pointer :: Nuc
- real, intent(in) :: fermiMomentum_input
NOTES
In 'Nuc', mass and charge have to be set as input variables.