gibuu is hosted by Hepforge, IPPP Durham
GiBUU

TABLE OF CONTENTS


/minkowski [ Modules ]

[ Top ] [ Modules ]

NAME

module minkowski

PURPOSE

This module defines functions which are connected to Relativity: Metric Tensor, Scalar Product, Gamma matrices, ...

NOTES

  • Uses the "mostly -" metric.


minkowski/gamma [ Global module-variables ]

[ Top ] [ minkowski ] [ Global module-variables ]

NAME

complex, dimension(0:3,0:3,0:11), parameter :: gamma

PURPOSE

represents the gamma matrices gamma0-gamma3, gamma5, gamma6-gamma11


minkowski/metricTensor [ Global module-variables ]

[ Top ] [ minkowski ] [ Global module-variables ]

PURPOSE

The metric tensor

SOURCE

  real, dimension(0:3,0:3), parameter :: metricTensor = reshape((/ 1., 0., 0., 0., &
                                                                   0.,-1., 0., 0., &
                                                                   0., 0.,-1., 0., &
                                                                   0., 0., 0.,-1. /),(/4,4/))

minkowski/contract [ Subroutines ]

[ Top ] [ minkowski ] [ Subroutines ]

NAME

real function Contract(a,b)

PURPOSE

Evaluates a^(mu nu) b_(mu nu)

INPUTS

  • a,b : matrices a^(mu nu) b^(mu nu)
  • The matrices can be real or complex (therefore we use an interface)

OUTPUT

  • real


minkowski/abs4 [ Functions ]

[ Top ] [ minkowski ] [ Functions ]

NAME

real function abs4(a) real function abs4(a, flagOk)

PURPOSE

Absolute value of a 4-vector.

INPUTS

  • real,dimension(0:3) :: a

OUTPUT

  • real :: abs4=sqrt(a(0)*a(0)-a(1)*a(1)-a(2)*a(2)-a(3)*a(3))


minkowski/op_ang [ Functions ]

[ Top ] [ minkowski ] [ Functions ]

NAME

real function op_ang(p1,p2)

PURPOSE

Computes the opening angle between the spatial components of two 4-vectors.

INPUTS

  • real,dimension(0:3) :: p1,p2

OUTPUT

  • opening angle in degrees [0...180]


minkowski/abs3 [ Functions ]

[ Top ] [ minkowski ] [ Functions ]

NAME

function abs3(a)

PURPOSE

Absolute value of the spatial components of a 4-vector.

INPUTS

  • real,dimension(0:3) :: a

OUTPUT

  • real :: abs3=sqrt(a(1)**2+a(2)**2+a(3)**2)


minkowski/abs4Sq [ Functions ]

[ Top ] [ minkowski ] [ Functions ]

NAME

real function abs4Sq(a)

PURPOSE

Absolute value squared of a 4-Vector.

INPUTS

  • real,dimension(0:3) :: a ! four vector

OUTPUT

  • real :: abs4Sq=a(0)*a(0)-a(1)*a(1)-a(2)*a(2)-a(3)*a(3)


minkowski/SP [ Functions ]

[ Top ] [ minkowski ] [ Functions ]

NAME

function SP(a,b)

PURPOSE

Scalar Product for 4-Vectors, "mostly -" metric

INPUTS

  • real,dimension(0:3) :: a,b ! four vectors

OUTPUT

  • real :: SP=a(0)*b(0)-a(1)*b(1)-a(2)*b(2)-a(3)*b(3)


minkowski/ContractCC [ Functions ]

[ Top ] [ minkowski ] [ Functions ]

NAME

real function ContractCC(a,b)

PURPOSE

Evaluates a^(mu nu) b_(mu nu)

INPUTS

  • complex,dimension(0:3,0:3) :: a,b ! matrices a^(mu nu) b^(mu nu)

OUTPUT

  • real


minkowski/ContractRR [ Functions ]

[ Top ] [ minkowski ] [ Functions ]

NAME

real function ContractRR(a,b)

PURPOSE

Evaluates a^(mu nu) b_(mu nu)

INPUTS

  • real,dimension(0:3,0:3) :: a,b ! matrices a^(mu nu) b^(mu nu)

OUTPUT

  • real


minkowski/sigma4 [ Functions ]

[ Top ] [ minkowski ] [ Functions ]

NAME

complex function sigma4(a)

PURPOSE

Returns sigma^(mu nu)=i/2 [gamma^mu, gamma^nu]

INPUTS

OUTPUT

  • complex, dimension(0:3,0:3) :: matrix


minkowski/slashed [ Functions ]

[ Top ] [ minkowski ] [ Functions ]

NAME

function slashed(p) result(matrix)

PURPOSE

Evaluates gamma^mu*p_mu

INPUTS

  • real, dimension(0:3) :: p

OUTPUT

  • complex, dimension(0:3,0:3) :: matrix


minkowski/slashed5 [ Functions ]

[ Top ] [ minkowski ] [ Functions ]

NAME

function slashed5(p) result(matrix)

PURPOSE

Evaluates gamma^mu*p_mu*gamma_5

INPUTS

  • real, dimension(0:3) :: p

OUTPUT

  • complex, dimension(0:3,0:3) :: matrix


minkowski/tilde [ Functions ]

[ Top ] [ minkowski ] [ Functions ]

NAME

function tilde(a) result(a_tilde)

PURPOSE

Evaluates a^tilde=gamma_0 a^dagger gamma_0

INPUTS

  • complex, dimension(0:3,0:3) :: a

OUTPUT

  • complex, dimension(0:3,0:3) :: a_tilde