TABLE OF CONTENTS
/lorentzTrafo [ Modules ]
NAME
module lorentzTrafo
PURPOSE
Implements lorentz transformation.
lorentzTrafo/lorentzCalcBeta [ Functions ]
[ Top ] [ lorentzTrafo ] [ Functions ]
NAME
function lorentzCalcBeta (Mom, CallName) result (beta) function lorentzCalcBeta (mom3, mass, CallName) result (beta)
PURPOSE
calculate the beta-Vector for a Lorentz-Boost. checks whether a valid vector results
INPUTS
- real,dimension(0:3) :: Mom
- character(40),optional :: CallName
or:
- real, dimension(1:3) :: mom3
- real :: mass
- character(40),optional :: CallName
RESULT
- real, dimension(1:3) :: beta
lorentzTrafo/lorentz [ Subroutines ]
[ Top ] [ lorentzTrafo ] [ Subroutines ]
NAME
subroutine lorentz(beta,fourVector,CallName)
PURPOSE
performs Lorentz transformation of fourVector into a system which is traveling with the velocity beta(1:3)
INPUTS
- real,dimension(0:3),intent(inout) :: fourVector
- real,dimension(1:3),intent(in) :: beta
- character(*),intent(in),optional :: CallName
RESULT
- real,dimension(0:3),intent(inout) :: fourVector
lorentzTrafo/BoostTensor [ Subroutines ]
[ Top ] [ lorentzTrafo ] [ Subroutines ]
NAME
subroutine BoostTensor(u,e,e0)
PURPOSE
Lorentz-Transformation of a tensor e(0:3,0:3) into a system moving with 4-velocity u(0,3).
INPUTS
- real,dimension(0:3),intent(in) :: u -- boost 4-velocity
- real,dimension(0:3,0:3),intent(in) :: e -- tensor in CF
RESULT
- real,dimension(0:3,0:3),intent(in) :: e0 -- tensor in LRF
NOTES
Lorentztransformation des Energie-Impuls-Tensor in das Ruhesystem
lorentzTrafo/eval_sigmaBoost [ Functions ]
[ Top ] [ lorentzTrafo ] [ Functions ]
NAME
real function eval_sigmaBoost(mom1,mom2)
PURPOSE
This function calculates the boost factor for a cross section. Given a cross section "sigma" which is defined the rest frame of particles A or B, the cross section "sigmaPrime" in a frame where both a moving is given by:
- sigmaPrime=sigma* eval_sigmaBoost
INPUTS
- real , dimension(0:3),intent(in) :: mom1,mom2 -- 4-momenta of the colliding pair
OUTPUT
- Boost factor
NOTES
- For derivation confer Oliver's Phd thesis (Appendix G)
- Note that the formula given in Effenberger's diploma thesis is only very approximate!!