gibuu is hosted by Hepforge, IPPP Durham
GiBUU

TABLE OF CONTENTS


/lorentzTrafo [ Modules ]

[ Top ] [ Modules ]

NAME

module lorentzTrafo

PURPOSE

Implements lorentz transformation.


lorentzTrafo/lorentzCalcBeta [ Functions ]

[ Top ] [ lorentzTrafo ] [ Functions ]

NAME

function lorentzCalcBeta(Mom) result (beta) function lorentzCalcBeta(mom3, mass) result (beta)

PURPOSE

calculate the beta-Vector for a Lorentz-Boost. checks whether a valid vector results

INPUTS

  • real,dimension(0:3) :: Mom

or:

  • real, dimension(1:3) :: mom3
  • real :: mass

RESULT

  • real, dimension(1:3) :: beta


lorentzTrafo/lorentz [ Subroutines ]

[ Top ] [ lorentzTrafo ] [ Subroutines ]

NAME

subroutine lorentz(beta,fourVector)

PURPOSE

performs Lorentz transformation of fourVector into a system which is traveling with the velocity beta(1:3)

INPUTS

  • real,dimension(0:3),intent(inout) :: fourVector
  • real,dimension(1:3),intent(in) :: beta

RESULT

  • real,dimension(0:3),intent(inout) :: fourVector


lorentzTrafo/BoostTensor [ Subroutines ]

[ Top ] [ lorentzTrafo ] [ Subroutines ]

NAME

subroutine BoostTensor(u,e,e0)

PURPOSE

Lorentz-Transformation of a tensor e(0:3,0:3) into a system moving with 4-velocity u(0,3).

INPUTS

  • real,dimension(0:3),intent(in) :: u -- boost 4-velocity
  • real,dimension(0:3,0:3),intent(in) :: e -- tensor in CF

RESULT

  • real,dimension(0:3,0:3),intent(in) :: e0 -- tensor in LRF

NOTES

Lorentztransformation des Energie-Impuls-Tensor in das Ruhesystem


lorentzTrafo/eval_sigmaBoost [ Functions ]

[ Top ] [ lorentzTrafo ] [ Functions ]

NAME

real function eval_sigmaBoost(mom1,mom2)

PURPOSE

This function calculates the boost factor for a cross section. Given a cross section "sigma" which is defined the rest frame of particles A or B, the cross section "sigmaPrime" in a frame where both a moving is given by:

  • sigmaPrime=sigma* eval_sigmaBoost

INPUTS

  • real , dimension(0:3),intent(in) :: mom1,mom2 -- 4-momenta of the colliding pair

OUTPUT

  • Boost factor

NOTES

  • For derivation confer Oliver's Phd thesis (Appendix G)
  • Note that the formula given in Effenberger's diploma thesis is only very approximate!!