TABLE OF CONTENTS
- 1. /lepton2p2h
- 1.1. lepton2p2h/lepton2p2h_DoQE
- 1.2. lepton2p2h/lepton2p2h_DoDelta
- 1.3. lepton2p2h/lepton2p2h_SelectN2
- 1.4. lepton2p2h/lepton2p2h_FinalState
- 1.5. lepton2p2h/lepton2p2h_XS
- 1.5.1. lepton2p2h_XS/ME_const
- 1.5.2. lepton2p2h_XS/ME_transverse
- 1.5.3. lepton2p2h_XS/ME_Dipole_transverse
- 1.5.4. lepton2p2h_XS/ME_W1W2W3
- 1.5.4.1. ME_W1W2W3/W1
- 1.5.4.1.1. W1/W1E
- 1.5.4.1.1.1. W1E/FAdep_2p2h
- 1.5.4.1.2. W1/Transverse_resp
- 1.5.4.1.3. W1/W1NU
- 1.5.4.2. ME_W1W2W3/W2
- 1.5.4.3. ME_W1W2W3/W3
/lepton2p2h [ Modules ]
NAME
module lepton2p2h
PURPOSE
Do all the internals for 2p2h scattering:
EM:
- ell N1 N2 --> ell' N1' N2' == gamma* N1 N2 --> N1' N2'
- ell N1 N2 --> ell' N Delta == gamma* N1 N2 --> N Delta
NC:
CC:
- nu N1 N2 --> ell- N1' N2' (sum of hadronic charges increases by +1)
- nu N1 N2 --> ell- N Delta ( -- " -- )
antiEM, antiNC and antiCC are the same as EM, NC, CC.
cases 1 - 3 give parametrizations for 2p2h part of structure function W1 in terms of Q^2, no distinction for neutrinos and antineutrinos
Cases 1 and 2 are those in: Lalakulich Gallmeister Mosel PRC86(2012)014614 Case 3 gives a reasonable description of MiniBooNE dd neutrino data
cases 4 - 5 give parametrization for MEC part of W1 from Christy and Bosted In this case also W3 is related to W1 (acc. Martini and Ericsson)
Case 4 describes double-differential data from MiniBooNE for neutrino and antineutrino scattering. It also describes the dd inclusive Xsection for neutrinos from T2K.
lepton2p2h/lepton2p2h_DoQE [ Subroutines ]
[ Top ] [ lepton2p2h ] [ Subroutines ]
NAME
subroutine lepton2p2h_DoQE(eN,outPart,XS)
PURPOSE
Do all the electron induced 2p2h-QE scattering gamma* N1 N2 -> N1' N2'
INPUTS
- type(electronNucleon_event) :: eN -- electron-Nucleon event info
OUTPUT
- type(particle), dimension(:) :: OutPart -- the two produced nucleons
- real :: XS -- the cross section
lepton2p2h/lepton2p2h_DoDelta [ Subroutines ]
[ Top ] [ lepton2p2h ] [ Subroutines ]
NAME
subroutine lepton2p2h_DoDelta(eN,outPart,XS)
PURPOSE
Do all the electron induced 2p2h-QE scattering gamma* N1 N2 -> N Delta
INPUTS
- type(electronNucleon_event) :: eN -- electron-Nucleon event info
OUTPUT
lepton2p2h/lepton2p2h_SelectN2 [ Subroutines ]
[ Top ] [ lepton2p2h ] [ Subroutines ]
NAME
subroutine lepton2p2h_SelectN2(eN)
PURPOSE
Finds the second nucleon for the 2p2h collision
INPUTS
- type(electronNucleon_event) :: eN -- electron-Nucleon event info
OUTPUT
- type(electronNucleon_event) :: eN -- a second nucleon is added
NOTES
- The seond particle is generated analytically, not by selecting a testparticle from the real particle vector.
- This is at a very basic level. You may add more sophisticated features as eq. two-particle correlatione etc.
- A threshold check Wfree>(2*mN+1MeV) is performed
lepton2p2h/lepton2p2h_FinalState [ Subroutines ]
[ Top ] [ lepton2p2h ] [ Subroutines ]
NAME
subroutine lepton2p2h_FinalState(eN,outPart,DoQE,flagOK)
PURPOSE
Generate the final state of the electron 2p2h event
lepton2p2h/lepton2p2h_XS [ Functions ]
[ Top ] [ lepton2p2h ] [ Functions ]
NAME
real function lepton2p2h_XS(eN,outPart,DoQE)
PURPOSE
calculate the electron induced 2p2h-QE cross section
INPUTS
- type(electronNucleon_event) :: eN -- electron-Nucleon event info
- type(particle),dimension(:) :: OutPart -- the outgoing particles
- logical :: DoQE -- .true. for NN final state, .false. for N Delta
OUTPUT
- the function value
NOTES
- One has to give a realistic parametrization of the matrix element
- If one randomly selects the position of the second particle, one has to respect this in the XS calculation (and not multiply it with the density at the position)
lepton2p2h_XS/ME_const [ Functions ]
[ Top ] [ lepton2p2h_XS ] [ Functions ]
NAME
real function ME_const(eN)
PURPOSE
lepton2p2h_XS/ME_transverse [ Functions ]
[ Top ] [ lepton2p2h_XS ] [ Functions ]
NAME
real function ME_transverse(eN)
PURPOSE
lepton2p2h_XS/ME_Dipole_transverse [ Functions ]
[ Top ] [ lepton2p2h_XS ] [ Functions ]
NAME
real function ME_Dipole_transverse(eN)
PURPOSE
calculate the 2p2h matrix element according to W_1(g_munu -q_um q_nu /Q2) * L^munu so that the contribution is only to the transverse part
NOTES
You have full access to all incoming and outgoing particles:
- eN%lepton_in -- incoming lepton
- eN%nucleon -- incoming nucleon 1
- eN%nucleon2 -- incoming nucleon 2
exchanged boson:
- eN%boson -- exchanged boson
even without considering the final state particles, you know the kind of process via 'eN%idProcess', which may take the values EM,NC,CC and also antiEM,antiNC,antiCC
lepton2p2h_XS/ME_W1W2W3 [ Functions ]
[ Top ] [ lepton2p2h_XS ] [ Functions ]
NAME
real function ME_W1W2W3(eN)
PURPOSE
to calculate the 2p2h contribution to the inclusive cross sections for electrons and neutrinos, cross section depends on all 3 structure functs
NOTES
You have full access to all incoming and outgoing particles:
- eN%lepton_in -- incoming lepton
- eN%nucleon -- incoming nucleon 1
- eN%nucleon2 -- incoming nucleon 2
exchanged boson:
- eN%boson -- exchanged boson
even without considering the final state particles, you know the kind of process via 'eN%idProcess', which may take the values EM,NC,CC and also antiEM,antiNC,antiCC
ME_W1W2W3/W1 [ Functions ]
[ Top ] [ ME_W1W2W3 ] [ Functions ]
NAME
real function W1(Q2,omega,GM2,GA2)
PURPOSE
Structure function W1 (for electrons: W1E, for neutrinos: W1NU)
W1/W1E [ Functions ]
NAME
real function W1E(Q2,omega)
PURPOSE
Structure function for electrons, parametrizations for MEC term only
W1E/FAdep_2p2h [ Functions ]
NAME
real function FAdep_2p2h(Atarget)
PURPOSE
W1/Transverse_resp [ Subroutines ]
[ Top ] [ W1 ] [ Subroutines ]
NAME
subroutine Transverse_resp(Q2,omega,GM2,RT,kinfact)
PURPOSE
transverse response = reduced structure function
NOTES
cf. ME_ODW
W1/W1NU [ Functions ]
NAME
real function W1NU(Q2,omega,GMV2,GA2)
PURPOSE
structure function W1 for neutrino-induced CC and NC MEC process
ME_W1W2W3/W2 [ Functions ]
[ Top ] [ ME_W1W2W3 ] [ Functions ]
NAME
real function W2(Q2,omega,GMV2,GA2)
PURPOSE
Structure function W2
ME_W1W2W3/W3 [ Functions ]
[ Top ] [ ME_W1W2W3 ] [ Functions ]
NAME
real function W3(Q2,omega,GMV,GA)
PURPOSE
Structure function W3, relevant only for neutrinos W3 is directly related to W1, either according to Martini and Ericsson, or to O'Connell, Donnelly, Walecka