gibuu is hosted by Hepforge, IPPP Durham
GiBUU
next up previous contents
Next: Up: Initial channel Previous:   Contents

$\mathbf{\pi N \longrightarrow \phi N }$

Utilizing the result of Golubeva et al. [GKC97] for $\pi^- p \rightarrow \phi n$ we define
$\displaystyle \sigma_{\pi^- p \rightarrow \phi n}$ $\textstyle =$ $\displaystyle \sigma^{\mathrm{Golubeva}}_{\pi^- p \rightarrow \phi n}$ (2.1)
$\displaystyle \sigma_{\pi^+ n \rightarrow \phi p}$ $\textstyle =$ $\displaystyle \frac{\left\langle 1  \frac{1}{2} ; 1  -\frac{1}{2} \vert \frac...
... \right\rangle^{2} }
  \sigma^{\mathrm{Golubeva}}_{\pi^- p \rightarrow \phi n}$ (2.2)
$\displaystyle \sigma_{\pi^0 p \rightarrow \phi p}$ $\textstyle =$ $\displaystyle \frac{\left\langle 1  \frac{1}{2} ; 0  \frac{1}{2} \vert \frac{...
... \right\rangle^{2} }
  \sigma^{\mathrm{Golubeva}}_{\pi^- p \rightarrow \phi n}$ (2.3)
$\displaystyle \sigma_{\pi^0 n \rightarrow \phi n}$ $\textstyle =$ $\displaystyle \frac{\left\langle 1  \frac{1}{2} ; 0  -\frac{1}{2} \vert \frac...
... \right\rangle^{2} }
  \sigma^{\mathrm{Golubeva}}_{\pi^- p \rightarrow \phi n}$ (2.4)



Oliver Buss 2005-03-16